Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

An LQR Approach of Automatic Transmission Upshift Control Including Use of Off-Going Clutch within Inertia Phase

2020-04-14
2020-01-0970
This paper considers using linear quadratic regulation (LQR) for multi-input control of the Automatic Transmission (AT) upshift inertia phase. The considered control inputs include the transmission input/engine torque, oncoming clutch torque, and traditionally not used off-going clutch torque. Use of the off-going clutch has been motivated by discussed Control Trajectory Optimization (CTO) results demonstrating that employing the off-going clutch during the inertia phase along with the main, oncoming clutch can improve the upshift control performance in terms of the shift duration and/or comfort by trading off the transmission efficiency and control simplicity to some extent. The proposed LQR approach provides setting an optimal trade-off between the conflicting criteria related to driving comfort and clutches thermal energy loss.
Technical Paper

Characterization and Modeling of Wet Clutch Actuator for High-Fidelity Propulsion System Simulations

2020-04-14
2020-01-1414
Innovations in mobility are built upon a management of complex interactions between sub-systems and components. A need for CAE tools that are capable of system simulations is well recognized, as evidenced by a growing number of commercial packages. However impressive they are, the predictability of such simulations still rests on the representation of the base components. Among them, a wet clutch actuator continues to play a critical role in the next generation propulsion systems. It converts hydraulic pressure to mechanical force to control torque transmitted through a clutch pack. The actuator is typically modeled as a hydraulic piston opposed by a mechanical spring. Because the piston slides over a seal, some models have a framework to account for seal friction. However, there are few contributions to the literature that describe the effects of seals on clutch actuator behaviors.
Technical Paper

Dynamic Characterization of Wet Friction Component under Realistic Transmission Shift Conditions

2006-04-03
2006-01-0151
A wet friction component continues to play a critical role in a step-ratio automatic transmission (AT) system. It is hydraulically actuated to alter planetary gear configurations for automatic shifting. During a shift event, its engagement torque is transmitted to AT output shaft, directly affecting vehicle shift quality. The friction component behaviors vary widely under different conditions. In a vehicle development process, unanticipated behaviors often lead to an inefficient trial-and-error approach for adjusting shift feel. Thus, a shift improvement process can benefit from upfront characterization of friction component behaviors. The so-called SAE#2 test system has served as the industry-standard since 1960's for evaluating friction components. It provides a useful means for evaluating friction component design variables. However, its standardized test conditions do not adequately capture dynamic effects of AT shift control variables.
X