Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D CFD Upfront Optimization of the In-Cylinder Flow of the 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1492
This paper presents part of the analytical work performed for the development and optimization of the 3.5L EcoBoost combustion system from Ford Motor Company. The 3.5L EcoBoost combustion system is a direct injected twin turbocharged combustion system employing side-mounted multi-hole injectors. Upfront 3D CFD, employing a Ford proprietary KIVA-based code, was extensively used in the combustion system development and optimization phases. This paper presents the effect of intake port design with various levels of tumble motion on the combustion system characteristics. A high tumble intake port design enforces a well-organized stable motion that results in higher turbulence intensity in the cylinder that in turn leads to faster burn rates, a more stable combustion and less fuel enrichment requirement at full load.
Technical Paper

A Comparative Investigation on the High Temperature Fatigue of Three Cast Aluminum Alloys

2004-03-08
2004-01-1029
The high temperature fatigue behaviors of three cast aluminum alloys used for cylinder head fabrication - 319, A356 and AS7GU - are compared under isothermal fatigue at room temperature and elevated temperatures. The thermo-mechanical fatigue behavior for both out-of-phase and in-phase loading conditions (100-300°C) has also been investigated. It has been observed that all three of these alloys present a very similar behavior under both isothermal and thermo-mechanical low-cycle fatigue. Under high-cycle fatigue, however, the alloys A356 and AS7GU exhibit superior performance.
Technical Paper

A Comparative Study of Automotive System Fatigue Models Processed in the Time and Frequency Domain

2016-04-05
2016-01-0377
The objective of this paper is to demonstrate that frequency domain methods for calculating structural response and fatigue damage can be more widely applicable than previously thought. This will be demonstrated by comparing results of time domain vs. frequency domain approaches for a series of fatigue/durability problems with increasing complexity. These problems involve both static and dynamic behavior. Also, both single input and multiple correlated inputs are considered. And most important of all, a variety of non-stationary loading types have been used. All of the example problems investigated are typically found in the automotive industry, with measured loads from the field or from the proving ground.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

A Modified Oil Lubrication System with Flow Control to Reduce Crankshaft Bearing Friction in a Litre 4 Cylinder Diesel Engine

2016-04-05
2016-01-1045
The oil distribution system of an automotive light duty engine typically has an oil pump mechanically driven through the front-endancillaries-drive or directly off the crankshaft. Delivery pressure is regulated by a relief valve to provide an oil gallery pressure of typically 3 to 4 bar absolute at fully-warm engine running conditions. Electrification of the oil pump drive is one way to decouple pump delivery from engine speed, but this does not alter the flow distribution between parts of the engine requiring lubrication. Here, the behaviour and benefits of a system with an electrically driven, fixed displacement pump and a distributor providing control over flow to crankshaft main bearings and big end bearings is examined. The aim has been to demonstrate that by controlling flow to these bearings, without changing flow to other parts of the engine, significant reductions in engine friction can be achieved.
Technical Paper

A New Method of Measuring Aeration and Deaeration of Fluids

2004-10-25
2004-01-2914
This paper describes the design and functionality of an in-situ air entrainment measuring device for analysis of the air entrainment and air release properties of lubricating fluids. The apparatus allows for a variety of measurement techniques for the aeration and deaeration of the lubricating fluid at various temperatures, pressures, and agitation speeds. This test apparatus is patent pending because of its unique ability to allow for continuous, in-situ measurement of the fluid properties and the rates of change of these properties. Most other measurement techniques and apparatuses do not allow for uninterrupted measurement. This apparatus is also unique in that it is capable of detecting minor fluid density changes at a lower level and with more accuracy than all other current techniques or apparatuses.
Journal Article

A Novel Technique for Measuring Cycle-Resolved Cold Start Emissions Applied to a Gasoline Turbocharged Direct Injection Engine

2020-04-14
2020-01-0312
There is keen interest in understanding the origins of engine-out unburned hydrocarbons emitted during SI engine cold start. This is especially true for the first few firing cycles, which can contribute disproportionately to the total emissions measured over standard drive cycles such as the US Federal Test Procedure (FTP). This study reports on the development of a novel methodology for capturing and quantifying unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start. The method was demonstrated by applying it to a 4 cylinder 2 liter GTDI (Gasoline Turbocharged Direct Injection) engine for cold start conditions at an ambient temperature of 22°C. For this technique, the entirety of the engine exhaust gas was captured for a predetermined number of firing cycles.
Technical Paper

A Post-processor for Finite Element Stress-based Fatigue Analysis

2006-04-03
2006-01-0537
Explicit finite element simulations were conducted on an aluminum wheel model where a rotating bend moment was applied on its hub to simulate wheel cornering fatigue testing. A post-processor was developed to calculate equivalent von Mises alternating and mean stresses from stress tensor. The safety factors of fatigue design for each finite element were determined to assess the fatigue performance by utilizing the Goodman linear relationship. Elements with low safety factors were identified due to the prescribed boundary conditions and stress concentrations arising from wheel geometry.
Technical Paper

A Study on Charge Motion Requirements for a Class-Leading GTDI Engine

2017-09-04
2017-24-0065
An integral part of combustion system development for previous NA gasoline engines was the optimization of charge motion towards the best compromise in terms of full load performance, part load stability, emissions and, last but not least, fuel economy. This optimum balance may potentially be different in GTDI engines. While it is generally accepted that an increased charge motion level improves the mixture preparation in direct injection gasoline engines, the tradeoff in terms of performance seems to become less dominant as the boosting systems of modern engines are typically capable enough to compensate the flow losses generated by the more restrictive ports. Nevertheless, the increased boost level does not come free; increased charge motion generates higher pumping- and wall heat losses. Hence it is questionable and engine dependent, whether more charge motion is always better.
Technical Paper

A Test Method for Quantifying Residual Stress Due to Heat Treatment in Metals

2006-04-03
2006-01-0319
Quantification of residual stresses is an important engineering problem impacting manufacturabilty and durability of metallic components. An area of particular concern is residual stresses that can develop during heat treatment of metallic components. Many heat treatments, especially in heat treatable cast aluminum alloys, involve a water-quenching step immediately after a solution-treatment cycle. This rapid water quench has the potential to induce high residual stresses in regions of the castings that experience large thermal gradients. These stresses may be partially relaxed during the aging portion of the heat treatment. The goal of this research was to develop a test sample and quench technique to quantify the stresses created by steep thermal gradients during rapid quenching of cast aluminum. The development and relaxation of residual stresses during the aging cycle was studied experimentally with the use of strain gauges.
Technical Paper

A Thermoviscoplastic FE Model for the Strain Prediction in High Temperature, Thermal Cycling Applications for Silicon Molybdenum Nodular Cast Iron

1998-02-23
980697
The design of components for high temperature, thermal cycling situations has traditionally been a challenging problem because the analysis must compensate for the non-linear behavior of the material. One example for automotive applications is the exhaust manifold, where temperatures may reach 900°C during thermal cycling. Fatigue failure and excessive deformation of these components must be analyzed with thermoviscoplastic models. A Finite Element (FE) model is developed to simulate the material behavior at high temperature, thermal cycling conditions. A specimen of Silicon Molybdenum Nodular Cast Iron (4% Si, 0.8% Mo) is cycled between maximum temperatures of 500°C and 960°C while the stress is measured with respect to time. The model predictions for stress are compared to the experimental results for two rates of thermal cycling. The analysis is conducted with and without creep effects to understand its contribution to the overall strain.
Technical Paper

A Transient, Multi-Cylinder Engine Model Using Modelica

2003-10-27
2003-01-3127
This paper describes a transient, thermodynamic, crank angle-based engine model in Modelica that can be used to simulate a range of advanced engine technologies. A single cylinder model is initially presented and described, along with its validation against steady-state dynamometer test data. Issues related to this single cylinder validation are discussed, including the appropriate conservation of hot residual gases under very early intake valve opening (IVO) conditions. From there, the extension from a single cylinder to a multi-cylinder V8 engine model is explained and simulation results are presented for a transient cylinder-deactivation scenario on a V8 engine.
Technical Paper

Air Charge and Residual Gas Fraction Estimation for a Spark-Ignition Engine Using In-Cylinder Pressure

2017-03-28
2017-01-0527
An accurate estimation of cycle-by-cycle in-cylinder mass and the composition of the cylinder charge is required for spark-ignition engine transient control strategies to obtain required torque, Air-Fuel-Ratio (AFR) and meet engine pollution regulations. Mass Air Flow (MAF) and Manifold Absolute Pressure (MAP) sensors have been utilized in different control strategies to achieve these targets; however, these sensors have response delay in transients. As an alternative to air flow metering, in-cylinder pressure sensors can be utilized to directly measure cylinder pressure, based on which, the amount of air charge can be estimated without the requirement to model the dynamics of the manifold.
Technical Paper

Aluminum Cylinder Head High Cycle Fatigue Durability Including the Effects of Manufacturing Processes

2012-04-16
2012-01-0540
High cycle fatigue material properties are not uniformly distributed on cylinder heads due to the casting process. Virtual Aluminum Casting (VAC) tools have been developed within Ford Motor Company to simulate the effects of the manufacturing process on the mechanical properties of cast components. One of VAC features is the ability to predict the high cycle fatigue strength distribution. Residual stresses also play an important role in cylinder head high cycle fatigue, therefore they are also simulated and used in the head high cycle fatigue analysis. Cylinder head assembly, thermal and operating stresses are simulated with ABAQUS™. The operating stresses are combined with the residual stresses for high cycle fatigue calculations. FEMFAT™ is used for the high cycle fatigue analysis. A user-defined Haigh diagram is built based on the local material properties obtained from the VAC simulation.
Technical Paper

An Air Meter Based Cylinder Air Charge Estimator

1999-03-01
1999-01-0856
A manifold filling model is used to derive a real time cylinder air charge estimate for mass air flow rate sensor equipped vehicles. The derivation shows that a simple first order linear difference equation in the discrete cylinder event domain is obtained from a coupled set of nonlinear differential equations.
Technical Paper

An Application for Fatigue Damage Analysis Using Power Spectral Density from Road Durability Events

1998-02-23
980689
A method is presented to process random vibration data from a complete road durability test environment as stationary segments and then develop test profiles based on fatigue content of their power spectral densities. Background is provided on existing techniques for estimating fatigue damage in the frequency domain. A general model for stress response to acceleration is offered to address the vibration test's requirement for acceleration data and the fatigue prediction method's requirement for stress data. With these tools, the engineer can extend test correlation beyond failure modes to include retention of estimated fatigue damage. Recommendations allow for test time compression from editing and improve existing exaggeration methods.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Technical Paper

An Object-Oriented Approach to the Post-Processing of Cylinder Bore Distortion, Valve Seat Distortion, Valve Guide-to-Seat Misalignment and Cam Bore Misalignment

2017-03-28
2017-01-1075
In CAE analysis of cylinder bore distortion, valve seat distortion, valve guide-to-seat misalignment and cam bore misalignment, nodal displacements on the cylinder bore inner surface and on the gage lines of valve seats, valve guides and cam bores are typically output. Best fit cylinders, best fit circles and best fit lines are computed by utilizing the output displacements of the deformed configuration. Based on the information of the best fit geometry, distortions and misalignments are assessed. Some commercial and in-house software is available to compute the best fit cylinders, best fit circles and best fit lines. However, they suffer from the drawback that only one best-fit geometry can be computed at a time. Using this kind of software to assess distortions and misalignments of engine components would be tedious and prone to error, since data transfer as well as the intermediate computation has to be done by hand, and the process is not automatic.
Technical Paper

Analysis of Flame Ionization Detector Oxygen Effects Using Blended Cylinders

2005-04-11
2005-01-0688
Recent papers have investigated the influence of sample composition on Flame Ionization Detector (FID) instrumentation used to measure total hydrocarbon content in exhaust emission samples. In this paper we describe experiments and results that further define these effects. Specially blended propane in air cylinders were crafted to provide a nominal 3 ppmC propane concentration with an oxygen content ranging from 17.5 vol % to 21 vol%. These cylinders were evaluated on multiple FID designs and then used to evaluate a strategy to correct the effects of the interaction. The study shows that, in general, most FID's behave similarly in response to changing oxygen content in the presence of hydrocarbon. Anomalies are discussed. The cylinders are then used to demonstrate that a proposed method for correcting the oxygen and hydrocarbon interaction is successful in reducing the effects.
Technical Paper

Analytical Methods for Durability in the Automotive Industry - The Engineering Process, Past, Present and Future

2001-03-05
2001-01-4075
In the early days of the automotive industry, durability and reliability were hit or miss affairs, with end-users often being the first to know about any durability problems - and in many cases forming an essential part of the development process. More recently, automotive companies have developed proving ground and laboratory test procedures that aim to simulate typical or severe customer usage. These test procedures have been used to develop the products through a series of prototypes and to prove the durability of the product prior to release in the marketplace. Now, commercial pressures and legal requirements have led to increasing reliance on CAE methods, with fatigue life prediction having a central role in the durability engineering process.
X