Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A CAE Study on Side Doors Inner Panel Deflection under Glass Stall Up Forces

2017-11-07
2017-36-0205
Not only well-functioning, but also the way operating everyday items "feel", gauges costumer perception of an automobile robustness. To prevent costumer dissatisfaction with door trim panel movement when operating power windows, deflections must be kept small. Deflections of inner panel are seen through trim panel and are responsible for giving a flimsy idea of the door. In this paper, inner panel movement for a fully stamped door in full glass stall up position is analyzed. Through CAE analyses, inner panel behavior was compared, considering different types of reinforcement for belt region.
Technical Paper

A Matrix Array Technique for Evaluation of Adhesively Bonded Joints

2012-04-16
2012-01-0475
Adhesive bonding technology is playing an increasingly important role in automotive industry. Ultrasonic evaluation of adhesive joints of metal sheets is a challenging problem in Non-Destructive Testing due to the large acoustic impedance mismatch between metal and adhesive, variability in the thickness of metal and adhesive layers, as well as variability in joint geometry. In this paper, we present the results from a matrix array of small flat ultrasonic transducers for evaluation of adhesively bonded joints in both laboratory and production environments. The reverberating waveforms recorded by the array elements are processed to obtain an informative parameter, whose two-dimensional distribution can be presented as a C-scan. Energy of the reflected waveform, normalized with respect to the energy obtained from an area with no adhesive, is a robust parameter for discriminating "adhesive/no-adhesive" regions.
Technical Paper

A Method for Vehicle Occupant Height Estimation

2017-03-28
2017-01-1440
Vehicle safety systems may use occupant physiological information, e.g., occupant heights and weights to further enhance occupant safety. Determining occupant physiological information in a vehicle, however, is a challenging problem due to variations in pose, lighting conditions and background complexity. In this paper, a novel occupant height estimation approach is presented. Depth information from a depth camera, e.g., Microsoft Kinect is used. In this 3D approach, first, human body and frontal face views (restricted by the Pitch and Roll values in the pose estimation) based on RGB and depth information are detected. Next, the eye location (2D coordinates) is detected from frontal facial views by Haar-cascade detectors. The eye-location co-ordinates are then transferred into vehicle co-ordinates, and seated occupant eye height is estimated according to similar triangles and fields of view of Kinect.
Technical Paper

A Self-Adapting Passenger Airbag for the USNCAP

2017-03-28
2017-01-1446
A dual-chambered passenger airbag was developed for the 2011 USNCAP to minimize neck loading for the belted 5th female dummy while restraining the unbelted 50th dummy for FMVSS208. This unique, patented design adaptively controlled venting between chambers based on occupant stature. A patented pressure-responsive vent on the second chamber permitted aspiration into the second chamber before a delayed outflow to the environment. The delayed flow through the pressure-responsive vent from the second chamber acted like a pressure-limiting membrane vent to advantageously reduce the injury assessment values for the HIC and the Nij for the 5th female dummy.
Journal Article

A Smart Gate Driver with Active Switching Speed Control for Traction Inverters

2017-03-28
2017-01-1243
The IGBTs are dominantly used in traction inverters for automotive applications. Because the Si-based device technology is being pushed to its theoretical performance limit in such applications during recent years, the gate driver design is playing a more prominent role to further improve the traction inverter loss performance. The conventional gate driver design in traction inverter application needs to consider worst case scenarios which adversely limit the semiconductor devices' switching speed in its most frequent operation regions. Specifically, when selecting the gate resistors, the IGBT peak surge voltage induced by fast di/dt and stray inductance must be limited below the device rated voltage rating under any conditions. The worst cases considered include both highest dc bus voltage and maximum load current. However, the traction inverter operates mainly in low current regions and at bus voltage much lower than the worst case voltage.
Technical Paper

A Study of Kinematics of Occupants Restrained with Seat Belt Systems in Component Rollover Tests

2007-04-16
2007-01-0709
An experimental study was conducted using a dynamic rollover component test system (ROCS) to study the effects of activating a pyro-mechanical buckle pre-tensioner and an electric retractor on the driver and front right passenger head and pelvis excursions. The ROCS is a unique system capable of producing vehicle responses that replicate four distinct phases of a tripped rollover: trip initiation, roll initiation, free-flight vehicle rotation, and vehicle to ground contact. This component test system consists of a rigid occupant compartment derived from a mid-size SUV with complete 1st row seating and interior trim, a simulated vehicle suspension system and an elastic vehicle-to-ground-contact surface. The ROCS system was integrated with a Deceleration Rollover Sled (DRS). Dynamic responses of the ROCS system, including both the rigid compartment and occupant, were measured and recorded.
Technical Paper

A System for Autonomous Braking of a Vehicle Following Collision

2017-03-28
2017-01-1581
This paper presents two brake control functions which are initiated when there is an impact force applied to a host vehicle. The impact force is generated due to the host vehicle being collided with or by another vehicle or object. The first function - called the post-impact braking assist - initiates emergency brake assistance if the driver is braking during or right after the collision. The second function - called the post-impact braking - initiates autonomous braking up to the level of the anti-lock-brake system if the driver is not braking during or right after the collision. Both functions intend to enhance the current driver assistance features such as emergency brake assistance, electronic stability control, anti-brake-lock system, collision mitigation system, etc.
Technical Paper

A Systematic Approach to Develop Metaheuristic Traffic Simulation Models from Big Data Analytics on Real-World Data

2021-04-06
2021-01-0166
Researchers and engineers are utilizing big data analytics to draw further insights into transportation systems. Large amounts of data at the individual vehicle trip level are being collected and stored. The true potential of such data is still to be determined. In this paper, we are presenting a data-driven, novel, and intuitive approach to model driver behaviors using microscopic traffic simulation. Our approach utilizes metaheuristic methods to create an analytical tool to assess vehicle performance. Secondly, we show how microscopic simulation run outputs can be post-processed to obtain vehicle and trip level performance metrics. The methodology will form the basis for a data-driven approach to unearthing trip experiences as realized by drivers in the real world. The methodology will contribute to, A.) Using vehicle trajectory traces to identify underlying vehicle maneuver distributions as obtained from real-world driver data, B.)
Technical Paper

A Theoretical, Risk Assessment Procedure for In-Position Drivers Involved in Full-Engagement Frontal Impacts

2003-03-03
2003-01-1354
A theoretical, mathematical, risk assessment procedure was developed to estimate the fraction of drivers that incurred head and thoracic AIS3+ injuries in full-engagement frontal crashes. The estimates were based on numerical simulations of various real-world events, including variations of crash severity, crash speed, level of restraint, and occupant size. The procedure consisted of four steps: (1) conduct the simulations of the numerous events, (2) use biomechanical equations to transform the occupant responses into AIS3+ risks for each event, (3) weight the maximum risk for each event by its real-world event frequency, and (4) sum the weighted risks. To validate the risk assessment procedure, numerous steps were taken. First, a passenger car was identified to represent average field performance.
Technical Paper

A semi-analytical approach for vehicle ride simulation

2008-10-07
2008-36-0048
Vehicle dynamics CAE capabilities has increased in the past few years, specially, for handling and steering attributes. However, secondary ride simulations are still highly depended on the tire model. Such tire model must be capable to simulate high order phenomenon such as impact and harshness transmissibility in three directions. In order to gather tire information sufficient to cope with these phenomena, one needs to perform a series of specific tests, and so be able to build the intended tire model. Still, there could be correlation issues. This whole process takes a lot of time and resources. This article presents a semi-analytical approach, using data gathered via wheel force transducers (WFTs) that are typically used for load cascading and durability purposes. The method main advantage is that since it relies on measured data at the wheel center, it is independent of a tire model, and, as such, it demands less time and resources.
Technical Paper

Abdominal Injuries in Frontal Crashes: Influence of Occupant Age and Seating Position

2018-04-03
2018-01-0535
Objective: This study investigated the incidence of abdominal injuries in frontal crashes by occupant age and seating position. It determined the risk for abdominal injury (AIS 2+) by organ and injury source. Methods: 1997-2015 NASS-CDS was analyzed to estimate the occurrence of abdominal injuries in non-ejected, belted occupants involved in frontal crashes. Vehicles were included with 1997+ model year (MY). The annual incidence and rate for different types of abdominal injury were estimated with standard errors. The sources for abdominal injury were determined. Results: 77.8% of occupants were drivers, 16.7% were right-front passengers and 5.4% were rear passengers. Rear passengers accounted for 77.1% of 8-11 year old (yo) and 17.2% of 12-17 yo group. The risk for moderate abdominal injury (MAIS 2 + abdo) was 0.30% ± 0.053% in drivers, 0.32% ± 0.086% in right-front passengers and 0.38% ± 0.063% in rear occupants.
Technical Paper

Acetabulum Injury Investigation of Proposed US-NCAP in OI Mode

2018-04-03
2018-01-0538
In December 2015, the National Highway Traffic Safety Administration (NHTSA) published a Request for Comments on proposed changes to the New Car Assessment Program (NCAP). One potential change is the addition of a frontal oblique impact (OI) crash test using the Test Device for Human Occupant Restraint (THOR). The resultant acetabulum force, which is a unique and specifically defined in the THOR dummy, will be considered as a new injury metric. In this study, the results of ten OI tests conducted by NHTSA on current production mid-sized vehicles were investigated. Specifically, the test data was used to study the lower extremity kinematics for the driver and front passenger THOR dummies. It was found that the acetabulum force patterns varied between the driver and passenger and between the left leg and the right leg of the occupants. The maximum acetabulum force can occur either on the left side or right side of a driver or a front passenger in an OI event.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Acquisition of Transient Tire Force and Moment Data for Dynamic Vehicle Handling Simulations

1983-11-07
831790
This paper describes the issues encountered in using conventionally acquired tire test data for dynamic total vehicle handling simulations and the need for improved methodology. It describes the new test procedure that was used to acquire all three forces and three moments in a transient mode for a matrix of loads, slip and camber angles. A study of the test data supports the premises that the overturning moment, Mx, should not be neglected in dynamic simulations, and that the effects of camber should not be treated as only an independent, linearly additive, camber thrust. Instead of the conventional application of a bi-cubic regression fit to a six region data division, a new algorithm is applied. The data is divided differently into five regions in the α - Fz plane, and a variable format regression equation is applied as appropriate. The resulting regression coefficients matrix is readily usable in dynamic simulations, and is shown to have a superior curve fit to the test data.
Technical Paper

Active Yaw Control of a Vehicle using a Fuzzy Logic Algorithm

2012-04-16
2012-01-0229
Yaw rate of a vehicle is highly influenced by the lateral forces generated at the tire contact patch to attain the desired lateral acceleration, and/or by external disturbances resulting from factors such as crosswinds, flat tire or, split-μ braking. The presence of the latter and the insufficiency of the former may lead to undesired yaw motion of a vehicle. This paper proposes a steer-by-wire system based on fuzzy logic as yaw-stability controller for a four-wheeled road vehicle with active front steering. The dynamics governing the yaw behavior of the vehicle has been modeled in MATLAB/Simulink. The fuzzy controller receives the yaw rate error of the vehicle and the steering signal given by the driver as inputs and generates an additional steering angle as output which provides the corrective yaw moment.
Technical Paper

Aerodynamic Drag of Engine-Cooling Airflow With External Interference

2003-03-03
2003-01-0996
This report examines the aerodynamic drag and external interference of engine cooling airflow. Much of the report is on inlet interference, a subject that has not been discussed in automotive technical literature. It is called inlet spillage drag, a term used in the aircraft industry to describe the change in inlet drag with engine airflow. The analysis shows that the reduction in inlet spillage drag, from the closed front-end reference condition, is the primary reason why cooling drag measurements are lower than would be expected from free stream momentum considerations. In general, the free stream momentum (or ram drag) is the upper limit and overstates the cooling drag penalty. An analytical expression for cooling drag is introduced to help the understanding and interpretation of cooling drag measurements, particularly the interference at the inlet and exit.
Technical Paper

Air Bag Parameter Study with Out-Of-Position Small Female Test Devices

2000-06-19
2000-01-2204
The development of the Advanced Restraint System has lead to an innovative way in which we evaluate the systems effect on the occupant. This paper presents some initial investigation into the driver airbag system that consists of an inflator, cushion fold, tear seam pattern, and offset of the airbag cover to steering wheel rim plane. An initial DOE is reviewed to establish significant parameters and to identify equations for further investigation.
Technical Paper

An Advanced Yaw Stability Control System

2017-03-28
2017-01-1556
This paper presents an advanced yaw stability control system that uses a sensor set including an inertial measurement unit to sense the 6 degrees-of-freedom motions of a vehicle. The full degree of the inertial measurement unit improves and enhances the vehicle motion state estimation over the one in the traditional electronic stability controls. The addition of vehicle state estimation leads to the performance refinement of vehicle stability control that can improve performance in certain situations. The paper provides both detailed system description and test results showing the effectiveness of the system.
Technical Paper

An Evaluation of Laminated Side Window Glass Performance During Rollover

2007-04-16
2007-01-0367
In this study, the occupant containment characteristics of automotive laminated safety glass in side window applications was evaluated through two full-scale, full-vehicle dolly rollover crash tests. The dolly rollover crash tests were performed on sport utility vehicles equipped with heat-strengthened laminated safety glass in the side windows in order to: (1) evaluate the capacity of laminated side window safety glass to contain unrestrained occupants during rollover, (2) analyze the kinematics associated with unrestrained occupants during glazing interaction and ejection, and (3) to identify laminated side window safety glass failure modes. Dolly rollovers were performed on a 1998 Ford Expedition and a 2004 Volvo XC90 at a nominal speed of 43 mph, with unbelted Hybrid II Anthropomorphic Test Devices (ATDs) positioned in the outboard seating positions.
Technical Paper

An Examination of Driver Eye Glance Behavior, Navigational Errors, and Subjective Assessments While Using In-Vehicle Navigational Systems With and Without Landmark Enhancements

2017-03-28
2017-01-1375
This study investigated the effects of three navigation system human-machine interfaces (HMIs) on driver eye-glance behavior, navigational errors, and subjective assessments. Thirty-six drivers drove an unfamiliar 3-segment route in downtown Detroit. HMIs were 2D or 3D (level-of-detail) electronic map display + standard voice prompts, or 3D map-display augmented by photorealistic images + landmark-enhanced voice prompts. Participants drove the same three route segments in order but were assigned a different HMI condition/segment in a 3-period/3-treatment crossover experimental design. Results indicate that drivers’ visual attention using the advanced navigation systems HMIs were within US Department of Transportation recommended visual distraction limits. More turns missed in the first route segment, regardless of HMI, were attributable to greater route complexity and a late-onset voice prompt. Participant’s ratings of HMIs were influenced by the context in which that HMI was used.
X