Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Modeling of Transient Engine Operations Using Data Generated by a CFD Code

2008-04-14
2008-01-0357
Transient engine operations are modeled and simulated with a 1-D code (GT Power) using heat release and emission data computed by a 3-D CFD code (Kiva3). During each iteration step of a transient engine simulation, the 1-D code utilizes the 3-D data to interpolate the values for heat release and emissions. The 3-D CFD computations were performed for the compression and combustion stroke of strategically chosen engine operating points considering engine speed, torque and excess air. The 3-D inlet conditions were obtained from the 1-D code, which utilized 3-D heat release data from the previous 1-D unsteady computations. In most cases, only two different sets of 3-D input data are needed to interpolate the transient phase between two engine operating points. This keeps the computation time at a reasonable level. The results are demonstrated on the load response of a generator which is driven by a medium-speed diesel engine.
Technical Paper

42V Power Supply Systems Impact for Emerging Market Projects

2005-11-22
2005-01-4115
This paper provides a survey about the consequences of a 42V Power Supply System for new vehicle projects, specially, its impact on directed project for Emerging Markets. At a first moment, it will be described new systems and its demand for additional power availability for future projects, such as electrical steering and brake systems; electrical air conditioning compressor; and electrical water and oil pumps. Following this subject, it will be presented possible alternatives for 14/42V Power Supply Systems, and also its impact over Power and Signal Distribution System components, such as connector, terminals, cables, relays, electrical centers, etc. Finally, the previous presented scenarios will be analyzed under a point of view for the Emerging Market demand for such new proposed systems, looking for best alternative driven.
Technical Paper

5th Percentile Driver Out of Position Computer Simulation

2000-03-06
2000-01-1006
A finite element model of a folded airbag with the module cover and steering wheel system was developed to estimate the injury numbers of a 5th percentile female dummy in an out-of-position (OOP) situation. The airbag model was correlated with static airbag deployments and standard force plate tests. The 5th percentile finite element dummy model developed by First Technology Safety Systems (FTSS) was used in the simulation. The following two OOP tests were simulated with the airbag model including a validated steering wheel finite element model: 1. Chest on air bag module for maximum chest interaction from pressure loading (MS6-D) and 2. Neck on air bag module for maximum neck interaction from membrane loading (MS8-D). These two simulations were then compared to the test results. Satisfactory correlation was found in both the cases.
Technical Paper

A Clean, Quiet, Environmentally Friendly Snowmobile

2002-10-21
2002-01-2763
In an attempt to reach a compromise between the views of environmentalists and snowmobile enthusiasts, the University of Wisconsin-Madison Clean Snowmobile Team set out to design a machine that maintains performance while decreasing air and noise pollution. After careful consideration of all possible design avenues, the decision was made to select a four-stroke power plant. In order to optimize the engine's efficiency, an engine control unit was chosen that was both capable and affordable. Engine modifications were made to allow the snowmobile's stock transmission to be used. Alterations were also made to intake, exhaust, and cooling systems to allow the engine to fit comfortably under the snowmobile's stock hood. Modifications were made to the snowmobile's chassis to accommodate the additional mass associated with the four-stroke engine. The final product is a snowmobile that minimizes environmental impact but still has the appearance and performance necessary to satisfy consumers.
Technical Paper

A Co-Simulation Framework for Full Vehicle Analysis

2011-04-12
2011-01-0516
The paper describes a methodology to co-simulate, with high fidelity, simultaneously and in one computational framework, all of the main vehicle subsystems for improved engineering design. The co-simulation based approach integrates in MATLAB/Simulink a physics-based tire model with high fidelity vehicle dynamics model and an accurate powertrain model allowing insights into 1) how the dynamics of a vehicle affect fuel consumption, quality of emission and vehicle control strategies and 2) how the choice of powertrain systems influence the dynamics of the vehicle; for instance how the variations in drive shaft torque affects vehicle handling, the maximum achievable acceleration of the vehicle, etc. The goal of developing this co-simulation framework is to capture the interaction between powertrain and rest of the vehicle in order to better predict, through simulation, the overall dynamics of the vehicle.
Technical Paper

A Comparison of Extruded Powder Metal Heating Elements and Metallic Foil Heating Elements

1996-10-01
962081
California Ultra Low Emission Vehicle (ULEV) standards call for a significant reduction in the amount of harmful gases that enter the environment from vehicle exhaust. The Electrically Heated Catalyst (EHC) is a possible solution to reduce emissions. A competitive analysis benchmarking study was completed in order to find an optimum EHC design that will perform to ULEV standards. Four suppliers submitted samples and the EHC designs were rigorously tested for temperature, pressure drop, and emissions performance while being aged at different levels.
Technical Paper

A Comprehensive Hazard Analysis Technique for Safety-Critical Automotive Systems

2001-03-05
2001-01-0674
Hazard analysis plays an important role in the development of safety-critical systems. Hazard analysis techniques have been used in the development of conventional automotive systems. However, as future automotive systems become more sophisticated in functionality, design, and applied technology, the need for a more comprehensive hazard analysis approach has arisen. In this paper, we describe a comprehensive hazard analysis approach for system safety programs. This comprehensive approach involves applying a number of hazard analysis techniques and then integrating their results. This comprehensive approach attempts to overcome the narrower scope of individual techniques while obtaining the benefits of all of them.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Decoupled Model of Detailed Fluid Mechanics Followed by Detailed Chemical Kinetics for Prediction of Iso-Octane HCCI Combustion

2001-09-24
2001-01-3612
We have developed a methodology for predicting combustion and emissions in a Homogeneous Charge Compression Ignition (HCCI) Engine. The methodology judiciously uses a fluid mechanics code followed by a chemical kinetics code to achieve great reduction in the computational requirements; to a level that can be handled with current computers. In previous papers, our sequential, multi-zone methodology has been applied to HCCI combustion of short-chain hydrocarbons (natural gas and propane). Applying the same procedure to long-chain hydrocarbons (iso-octane) results in unacceptably long computational time. In this paper, we show how the computational time can be made acceptable by developing a segregated solver. This reduces the run time of a ten-zone problem by an order of magnitude and thus makes it much more practical to make combustion studies of long-chain hydrocarbons.
Technical Paper

A Madymo Model of the Foot and Leg for Local Impacts

1999-10-10
99SC12
It has been reported that lower extremity injuries represent a measurable portion of all moderate-to-severe automobile crash- related injuries. Thus, a simple tool to assist with the design of leg and foot injury countermeasures is desirable. The objective of this study is to develop a mathematical model which can predict load propagation and kinematics of the foot and leg in frontal automotive impacts. A multi-body model developed at the University of Virginia and validated for blunt impact to the whole foot has been used as basis for the current work. This model includes representations of the tibia, fibula, talus, hindfoot, midfoot and forefoot bones. Additionally, the model provides a means for tensioning the Achilles tendon. In the current study, the simulations conducted correspond to tests performed by the Transport Research Laboratory and the University of Nottingham on knee-amputated cadaver specimens.
Technical Paper

A Model-Based Brake Pressure Estimation Strategy for Traction Control System

2001-03-05
2001-01-0595
This paper presents a brake pressure estimation algorithm for Delphi Traction Control Systems (TCS). A control oriented lumped parameter model of a brake control system is developed using Matlab/Simulink. The model is derived based on a typical brake system and is generic to other types of brake control hardware systems. For application purposes, the model is simplified to capture the dominant dynamic brake pressure response. Vehicle experimental data collected under various scenarios are used to validate the algorithm. Simulation results show that the algorithm gives accurate pressure estimation. In addition, the calibration procedure is greatly simplified
Technical Paper

A Model-based Environment for Production Engine Management System (EMS) Development

2001-03-05
2001-01-0554
This paper describes an environment for the development of production Engine Management Systems (EMS). This includes a formal framework and modeling methodology. The environment is based on using Simulink/Stateflow for developing a control system executable specification and a plant model. This allows for simulations of the system to be performed at the engineer's desk, which is identical performance with production software. We provide the details for incorporating production legacy code into the Simulink/Stateflow control system. The system includes a multi-rate, and event driven operating system. This system is developed to facilitate new algorithm development and automated software testing. Based on Simulink/Stateflow this specification will be suitable for use with commercial automatic code generation tools.
Technical Paper

A Modular HMMWV Dynamic Powertrain System Model

1999-03-01
1999-01-0740
A dynamic powertrain system model of the High Mobility Multi-Wheeled Vehicle (HMMWV) was created in the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison. Simulink graphical programming software was used to create the model. This dynamic model includes a Torsen differential model and a Hyrda-matic 4L80-E automatic transmission model as well as several other powertrain component models developed in the PCRL. Several component inertias and shaft stiffnesses are included in the dynamic model. The concepts of modularity, flexibility, and user-friendliness were emphasized during model development so that the system model would be a useful design tool. Simulation results from the model are shown.
Technical Paper

A New Approach to System Level Soot Modeling

2005-04-11
2005-01-1122
A procedure has been developed to build system level predictive models that incorporate physical laws as well as information derived from experimental data. In particular a soot model was developed, trained and tested using experimental data. It was seen that the model could fit available experimental data given sufficient training time. Future accuracy on data points not encountered during training was estimated and seen to be good. The approach relies on the physical phenomena predicted by an existing system level phenomenological soot model coupled with ‘weights’ which use experimental data to adjust the predicted physical sub-model parameters to fit the data. This approach has developed from attempts at incorporating physical phenomena into neural networks for predicting emissions. Model training uses neural network training concepts.
Technical Paper

A New High Pressure Droplet Vaporization Model for Diesel Engine Modeling

1995-10-01
952431
A droplet vaporization model has been developed for use in high pressure spray modeling. The model is a modification of the common Spalding vaporization model that accounts for the effects of high pressure on phase equilibrium, transport properties, and surface tension. The new model allows for a nonuniform temperature within the liquid by using a simple 2-zone model for the droplet. The effects of the different modifications are tested both for the case of a single vaporizing droplet in a quiescent environment as well as for a high pressure spray using the KIVA II code. Comparisons with vaporizing spray experiments show somewhat improved spray penetration predictions. Also, the effect of the vaporization model on diesel combustion predictions was studied by applying the models to simulate the combustion process in a heavy duty diesel engine. In this case the standard and High Pressure vaporization models were found to give similar heat release and emissions results.
Technical Paper

A Numerical Study of Cavitating Flow Through Various Nozzle Shapes

1997-05-01
971597
The flow through diesel fuel injector nozzles is important because of the effects on the spray and the atomization process. Modeling this nozzle flow is complicated by the presence of cavitation inside the nozzles. This investigation uses a two-dimensional, two-phase, transient model of cavitating nozzle flow to observe the individual effects of several nozzle parameters. The injection pressure is varied, as well as several geometric parameters. Results are presented for a range of rounded inlets, from r/D of 1/40 to 1/4. Similarly, results for a range of L/D from 2 to 8 are presented. Finally, the angle of the corner is varied from 50° to 150°. An axisymmetric injector tip is also simulated in order to observe the effects of upstream geometry on the nozzle flow. The injector tip calculations show that the upstream geometry has a small influence on the nozzle flow. The results demonstrate the model's ability to predict cavitating nozzle flow in several different geometries.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Technical Paper

A Quasi-Dimensional NOx Emission Model for Spark Ignition Direct Injection (SIDI) Gasoline Engines

2013-04-08
2013-01-1311
A fundamentally based quasi-dimensional NOx emission model for spark ignition direct injection (SIDI) gasoline engines was developed. The NOx model consists of a chemical mechanism and three sub-models. The classical extended Zeldovich mechanism and N₂O pathway for NOx formation mechanism were employed as the chemical mechanism in the model. A characteristic time model for the radical species H, O and OH was incorporated to account for non-equilibrium of radical species during combustion. A model of homogeneity which correlates fundamental dimensionless numbers and mixing time was developed to model the air-fuel mixing and inhomogeneity of the charge. Since temperature has a dominant effect on NOx emission, a flame temperature correlation was developed to model the flame temperature during the combustion for NOx calculation. Measured NOx emission data from a single-cylinder SIDI research engine at different operating conditions was used to validate the NOx model.
Technical Paper

A Review of Cell Equalization Methods for Lithium Ion and Lithium Polymer Battery Systems

2001-03-05
2001-01-0959
Lithium-based battery technology offers performance advantages over traditional battery technologies at the cost of increased monitoring and controls overhead. Multiple-cell Lead-Acid battery packs can be equalized by a controlled overcharge, eliminating the need to periodically adjust individual cells to match the rest of the pack. Lithium-based based batteries cannot be equalized by an overcharge, so alternative methods are required. This paper discusses several cell-balancing methodologies. Active cell balancing methods remove charge from one or more high cells and deliver the charge to one or more low cells. Dissipative techniques find the high cells in the pack, and remove excess energy through a resistive element until their charges match the low cells. This paper presents the theory of charge balancing techniques and the advantages and disadvantages of the presented methods.
Technical Paper

A Sensory Approach to Develop Product Sound Quality Criterion

1999-05-17
1999-01-1818
Product sound quality is becoming increasingly critical in recent years. To help improve customer satisfaction and product quality, Delphi Automotive Systems has taken a proactive approach to address sound quality issues. The first step is to identify customers' expectations. This paper describes a sensory approach to develop sound quality criterion for a power product. To identify critical sound quality characteristics, a large number of sound samples were recorded. Jury (focus group) evaluation was conducted to identify the acceptance level and preference of each sample. Then, critical objective measures, and the criterion level of each measure, were identified via correlation analysis with subjective responses. This article presents a practitioner's point of view on how to apply sensory engineering method to engineering practice.
X