Refine Your Search

Topic

Search Results

Technical Paper

A Low Cost, Lightweight Solution for Soft Seamless Airbag Systems

2004-03-08
2004-01-1485
OEM and Tier One integrated suppliers are in constant search of cockpit system components that reduce the overall number of breaks across smooth surfaces. Traditionally, soft instrument panels with seamless airbag systems have required a separate airbag door and a tether or steel hinge mechanism to secure the door during a deployment. In addition, a scoring operation is necessary to ensure predictable, repeatable deployment characteristics. The purpose of this paper is to demonstrate the development and performance of a cost-effective soft instrument panel with a seamless airbag door that results in a reduced number of parts and a highly efficient manufacturing process. Because of the unique characteristics of this material, a cost-effective, lightweight solution to meet both styling requirements, as well as safety and performance criteria, can be attained.
Technical Paper

A Structural Instrument Panel from Glass-Mat Thermoplastic for the Small-Car Market

1997-02-24
970726
Designers and engineers encounter many challenges in developing vehicles for the small-car market. They face constant pressure to reduce both mass and cost while still producing vehicles that meet environmental and safety requirements. At the same time, today's discriminating consumers demand the highest quality in their vehicles. To accommodate these challenges, OEMs and suppliers are working together to improve all components and systems for the high-volume small-car market. An example of this cooperative effort is a project involving an integrated structural instrument panel (IP) designed to meet the specific needs of the small-car platform. Preliminary validation of the IP project, which uses a compression-molded, glass-mat-thermoplastic (GMT) composite and incorporates steel and magnesium, indicates it will significantly reduce part count, mass, assembly time, and overall cost.
Technical Paper

Abusive Testing of Thermoplastic vs. Steel Bumpers Systems

1998-02-23
980106
Over the last decade, on small- and medium-size passenger cars, a new class of front bumper - injection or blow molded from engineering thermoplastics - has been put into production use. These bumper systems provide full 8-km/hr federal pendulum and flat-barrier impact protection, as well as angled barrier protection. Thermoplastic bumpers, offering weight, cost, and manufacturing advantages over conventional steel bumper systems, also provide high surface finish and styling enhancements. However, there remain questions about the durability and engineering applicability of thermoplastic bumper systems to heavier vehicles. This paper presents results of a preliminary study that examines the durability of thermoplastic bumpers drawn from production lots for much lighter compact, and mid-size passenger cars against baseline steel bumper systems currently used on full-size pickup truck and sport-utility vehicles (SUVs). Bumpers were subjected to U.S.
Technical Paper

Application of a MIC Metallic Flake ASA/PC Weatherable Resin Predictive Engineering Package

2006-04-03
2006-01-0135
The automotive industry continues to strive for mold-in-color (MIC) solutions that can provide metallic flake appearances. These MIC solutions can offer a substantial cost out opportunity while retaining a balance of weathering performance and physical properties. This paper discusses a predictive engineering package used to hide, minimize and eliminate flow lines. Material requirements and the methods used to evaluate flowline reduction and placement for visual inspection criteria are detailed. The Nissan Quest® luggage-rack covers are used to illustrate this application. The paper also explores how evolving predictive packages offer expanding possibilities.
Technical Paper

CAE Processing Analysis of Plastic Fenders

1992-09-01
922116
Engineering thermoplastics are being used increasingly in automotive exterior body applications; most of these applications require that the panels be painted “on line” with the rest of the car body at relatively high temperatures. The high temperatures associated with the painting/conditioning of the car have been shown to cause dimensional stability problems on automotive fenders molded from NORYL GTX®. This paper contains the results of an extensive FEA investigation targeted at determining what factors cause dimensional problems in fenders exposed to high heat. The ABAQUS FEA software was used to perform computer simulations of the process and the C-PACK/W software was used to determine molded in stress values.
Technical Paper

Conductive Plastics Leading Fuel Door Technology

2002-03-04
2002-01-0278
This paper will discuss, compare, and contrast current materials, designs, and manufacturing options for fuel filler doors. Also, it will explore the advantages of using conductive thermoplastic substrates over other materials that are commonly used in the fuel filler door market today. At the outset, the paper will discuss the differences between traditional steel fuel filler doors, which use an on-line painting process, and fuel filler doors that use a conductive thermoplastic substrate and require an in-line or off-line painting process. After reviewing the process, this paper will discuss material options and current technology. Here, we will highlight key drivers to thermoplastics acceptance, and look at the cost saving opportunities presented by the inline paint process option using a conductive thermoplastic resin, as well as benefits gained in quality control, component storage and coordination.
Technical Paper

Conductive Thermoplastic Resin for Electrostatically Painted Applications

1998-02-23
980983
The formulation of injection moldable thermoplastics with small loadings of graphite nanotubes provides sufficient conductivity in molded parts to allow for use in electrostatic painting applications. Normally, plastic parts need to be painted with a conductive primer prior to the electrostatic painting of base and clear coats. The use of conductive plastics eliminates the need for the priming step, and improves paint transfer efficiency and first pass yield. These elements provide obvious savings in materials and labor. What is less obvious, however, is the dramatic positive environmental impact that can occur through the reduction in emissions of volatile organic compounds (VOCs). Graphite nanotube technology provides advantages over other technologies such as conductive carbon black. In order to reach the percolation threshold for conductivity in carbon-black-containing resins, the loading of carbon black required tends to embrittle the polymer.
Technical Paper

Consistency of Thermoplastic Bumper Beam Impact Performance

1998-02-23
980113
This paper will address several critical aspects of bumper system performance, including vehicle damage protection and crash-severity sensing considerations, energy-absorption capacity and efficiency, and low-speed impact consistency and sensitivity to temperature changes. The objective is to help engineers and designers establish a realistic perspective of the capability of the various technologies based on actual test performance. The scope of the evaluation will include a comparison of several bumper-beam material constructions when subjected to a 16-km/hr swinging barrier impact over a range of temperatures the bumper could see in service (-30 to 60C).
Technical Paper

Correlation of Finite-Element Analysis to Free-Motion Head-Form Testing for FMVSS 201U Impact Legislation

1997-02-24
970163
Automotive engineers and designers are working to develop pillar-trim concepts that will comply with the upper interior head-impact legislation, FMVSS 201U. However, initial development cycles have been long and repetitive. A typical program consists of concept development, tool fabrication, prototype molding, and impact testing. Test results invariably lead to tool revisions, followed by further prototypes, and still more impact testing. The cycle is repeated until satisfactory parts are developed - a process which is long (sometimes in excess of 1 year) and extremely labor intensive (and therefore expensive). Fortunately, the use of finite-element analysis (FEA) can greatly reduce the concept-to-validation time by incorporating much of the prototype and impact evaluations into computer simulations. This paper describes both the correlation and validation of an FEA-based program to physical free-motion head-form testing and the predictive value of this work.
Technical Paper

Design & Development of a Prototype Gas-Assist-Molded Glovebox Door

1998-02-23
980963
The purpose of this paper is to discuss design methodology, manufacturing considerations, and testing proveout for a prototype gas-assist-molded, energy-absorbing, glovebox door program. The design used a single gas pin mounted in a multiple-gas-channel component and an internal gas manifold to form an efficient energy absorbing system. The end goal for the development program was to manufacture a glovebox door in a system that could meet the customer's targets for cost, surface appearance, and safety considerations without degrading function and fit. This paper will discuss the ability of a design methodology to predict actual component performance using engineering calculations, analytical tools, and prototype testing/molding during the development.
Technical Paper

Design and Development of a Generic Door Hardware Module Concept

1998-02-23
980999
This paper documents the design methodology, part performance, and economic considerations for a generic hardware module applied to a front passenger-car door. Engineering thermoplastics (ETPs), widely used in automotive applications for their excellent mechanical performance, design flexibility, and parts integration, can also help advance the development of modular door-hardware systems. Implementation of these hardware carriers is being driven by pressures to increase manufacturing efficiencies, reduce mass, lower part-count numbers, decrease warranty issues, and cut overall systems costs. In this case, a joint team from GE Plastics, Magna-Atoma International/Dortec, and Excel Automotive Systems assessed the opportunity for using a thermoplastic door hardware module in a current mid-size production vehicle. Finite-element analysis showed that the thermoplastic module under study withstood the inertial load of the door being slammed shut at low, room, and elevated temperatures.
Technical Paper

Design and Development of an Engineering Thermoplastic Energy Absorbing System for Automotive Knee Bolsters

1997-02-24
970725
Traditional knee bolster designs consist of a first-surface plastic component covered by paint or vinyl skin and foam, with a subsurface steel plate that transfers knee loads to 2 steel crush brackets. The design was developed to meet FMVSS 208 and OEM requirements. More recently, technological developments have allowed for the steel plate to be replaced by a ribbed plastic structure, which offers cost and weight savings to the instrument panel system. However, it is still a hybrid system that combines plastic with the 2 steel crush brackets. This paper will detail the development of an all-plastic design, which consolidates the plastic ribbed reinforcement plate with the 2 steel crush cans in a single engineering thermoplastic component. The new system is expected to offer further cost and weight savings.
Technical Paper

Development of a Blow Molded, Thermoplastic Front Bumper System Offering Angled Barrier Protection

1997-02-24
970486
A new front bumper, blow molded from an engineering thermoplastic, is being used to provide full 8 km/h federal pendulum and flat-barrier impact protection, as well as angled barrier protection on a small passenger car. The low intrusion bumper is compatible with the vehicle's single-sensor airbag system and offers a 5.8 kg mass savings compared with competitive steel/foam systems. This paper will describe the design and development of the bumper system and the results achieved during testing.
Technical Paper

Engineering Development and Performance of an Integrated Structural Instrument Panel Assembly and Heater-Ventilation-Air-Conditioning Assembly

2000-03-06
2000-01-0416
Textron Automotive Trim, Valeo Climate Control, and Torrington Research Company, with assistance from GE Plastics, have developed an integrated instrument panel system to meet ever-increasing industry targets for: Investment and piece-cost reduction; Mass/weight savings; Quality and performance improvements; Packaging and space availability; Government regulation levels; and Innovative technology. This system, developed through feedback with the DaimlerChrysler Corporation, combines the distinctive requirements of the instrument panel (IP) with the heater-ventilation-air-conditioning (HVAC) assembly. Implementing development disciplines such as benchmarking, brainstorming, and force ranking, a number of concepts were generated and evaluated. Using a current-production, small, multi-purpose vehicle environment, a mainstream concept was designed and engineered.
Technical Paper

Field Performance and Repair of Thermoplastic Exterior Body Panel Systems

1990-02-01
900291
Thermoplastic body panels are emerging in the industry as automotive manufacturers seek to design for advanced aerodynamic styling, lower weight, and cost effective vehicles. To best exhibit the advantages of GE thermoplastic resins in these applications, an extensive study has been completed to demonstrate the impact performance of thermoplastic body panels in the field based on the current success with the Buick LeSabre T-Type, Buick Reatta, and the Cadillac Deville and Fleetwood models using NORYL GTX® 910 resin fenders. This study provides a “real life” scenario of the advantages of thermoplastics compared to steel in body panel applications.
Technical Paper

First One-Piece, Injection-Molded Thermoplastic Front-Bumper System for a Light Truck

1998-02-23
980107
The first single-piece, injection-molded, thermoplastic, front bumper for a light truck provides improved performance and reduced cost for the 1997 MY Explorer® Ltd. and 1988 MY Mountaineer® truck from Ford Motor Company. Additionally, the system provides improved impact performance, including the ability to pass 5.6 km/hr barrier impact tests without damage. Further, the advanced, 1-piece design integrates fascia attachments, reducing assembly time, and weighs 8.76 kg/bumper less than a baseline steel design. The complete system provides a cost savings vs. extruded aluminum and is competitive with steel bumpers.
Technical Paper

Integrated Energy-Management Systems:Market Trends, OEM Needs, & Business Opportunities for the Tier 1 Community

1998-02-23
980110
Recent vehicle design trends require bumper systems to be crashworthy under more demanding circumstances, e.g. tighter package space, heavier vehicle mass, and wider rail spans. Meanwhile, pressure to reduce cost and weight of bumpers continues at a time when roles in the supplier community are changing. These factors have combined to increase the importance of optimizing bumper design and material properties for specific platforms. Materials suppliers have responded by developing a range of specialized engineering thermoplastic (ETP) resins that can help meet increasing performance requirements yet also offer the potential for improved manufacturing productivity, significant weight savings, and systems cost reductions. Material suppliers have also increased the level of technical design support provided to OEMs and 1st Tier suppliers.
Technical Paper

Lightweight Thermoplastic Composite Throttle Bodies for Car and Truck Applications

2001-03-05
2001-01-1140
The drive to reduce weight, simplify assembly, and cut total system cost in today's vehicles is relentless. Replacing metal systems with thermoplastics has been of considerable interest in the engineering community. The current generations of engineering thermoplastic resins are enabling the use of plastic systems in demanding underhood applications. Technical data and discussion regarding the materials, design, molding, and assembly of lightweight composite throttle bodies will be presented in this paper. Comparisons with machined aluminum throttle housings are drawn to establish a baseline with the throttle body housing component that is most common in production today. Design flexibility and process simplification are some of the approaches highlighted. Much of the technical information provided in the paper applies to both cable driven mechanical throttle bodies as well as electronic throttle bodies under development.
Technical Paper

Managing Thermal Growth for Large Class “A” Polymer Body Panel Closure Systems

2002-01-04
2002-01-0276
The history behind Polymer Class “A” Body Panels for automotive applications is very interesting. The driving factors behind these applications have not changed significantly over the past sixty years. Foremost among these factors is the need for corrosion and dent resistance. Beginning with Saturn in 1990, interest in polymer body panels grew and continues to grow up to the present day, with every new global application. Today, consumers and economic factors drive the industry trend towards plastic body panels. These include increased customization and fuel economy on the consumer side. Economic factors such as lower unit build quantities, reduced vehicle mass, investment cost, and tooling lead times influence material choice for industry. The highest possible performance, and fuel economy, at the lowest price have always been a goal.
Technical Paper

Optimizing Parts and Systems Integration with Engineering Thermoplastics to Meet the Challenges of Future Automotive Door Systems

1997-02-24
970144
As automakers struggle to meet often conflicting safety, weight, styling, and performance requirements, engineering thermoplastics (ETPs) are making increasing inroads into applications that once were the exclusive domain of metals, glass, and thermosets. A good example of this is in the door systems area, where the performance, design flexibility, aesthetics, parts integration, and lower specific gravity offered by ETPs are allowing highly integrated and efficient modules to be created that, in turn, increase assembly efficiency and reduce mass, part count, warranty issues, and systems costs. This paper will use several case studies on innovative door hardware modules and door panels to illustrate the advantages offered by this versatile class of engineering materials.
X