Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Ford P2000 Hydrogen Engine Design and Vehicle Development Program

2002-03-04
2002-01-0240
In late 1997 Ford Motor Company Scientific Research Laboratory started the project to design and develop a practical, low-cost hydrogen fueled internal combustion engine (H2ICE) vehicle. This type of vehicle could serve as an interim step to drive the development of the hydrogen infrastructure before the widespread use of fuel cell vehicles. This paper will discuss the design and development approach and results for a dedicated engine optimized for operation on hydrogen, the unique and custom instrumentation necessary when working with hydrogen, the engine dynamometer development program, the unique triple-redundant vehicle safety system, and the final implementation into the Ford P2000 experimental vehicle.
Technical Paper

Optimal A/F Ratio Estimation Model (Synthetic UEGO) for SI Engine Cold Transient AFR Feedback Control

1998-02-23
980798
A new method to estimate instantaneous A/F ratio and use the estimation as a feedback signal to control AFR during cold transients, before the oxygen sensor is functional, has been realized by a on-board PCM for a vehicle with a 4.6L, V8, PFI engine [4, 6]. Different AFRs cause variations in flame propagation, causing fluctuations in the effective torque. When a known AFR disturbance is induced into an engine system, a corresponding crankshaft angular velocity fluctuation can be detected. A variable derived from this physical phenomenon can be used to characterize the problem. The optimal fuel perturbation signal is designed by a relaxation concept, and the system model is determined by employing a dual-direction screening multivariate stepwise regression analysis. The estimated AFR is used by the PCM in a closed loop control to correct the fuel during cold transients.
X