Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Rational Approach to Qualifying Materials for Use in Fuel Systems

2000-06-19
2000-01-2013
About 10 years ago in the US, an automotive OEM consortium formed the Oxygenated Fuels Task Force which in turn created the SAE Cooperative Research Project Group 2 to develop a simple rational method for qualifying materials. At that time the focus was Methanol/Gasoline blends. This work resulted in SAE J1681, Gasoline/Methanol Mixtures for Materials Testing. Recently this document was rewritten to make it the single, worldwide, generic source for fuel system test fluids. The paper will describe the rationale for selecting the fuel surrogate fluids and why this new SAE standard should replace all existing test fuel or test fluid standards for fuel system materials testing.
Technical Paper

A Robust Procedure for Convergent Nonparametric Multivariate Metamodel Design

2004-03-08
2004-01-1127
Fast-running metamodels (surrogates or response surfaces) that approximate multivariate input/output relationships of time-consuming CAE simulations facilitate effective design trade-offs and optimizations in the vehicle development process. While the cross-validated nonparametric metamodeling methods are capable of capturing the highly nonlinear input/output relationships, it is crucial to ensure the adequacy of the metamodel error estimates. Moreover, in order to circumvent the so-called curse-of-dimensionality in constructing any nonlinear multivariate metamodels from a realistic number of expensive simulations, it is necessary to reliably eliminate insignificant inputs and consequently reduce the metamodel prediction error by focusing on major contributors. This paper presents a robust data-adaptive nonparametric metamodeling procedure that combines a convergent variable screening process with a robust 2-level error assessment strategy to achieve better metamodel accuracy.
Technical Paper

Achievements and Exploitation of the AUTOSAR Development Partnership

2006-10-16
2006-21-0019
Reductions of hardware costs as well as implementations of new innovative functions are the main drivers of today's automotive electronics. Indeed more and more resources are spent on adapting existing solutions to different environments. At the same time, due to the increasing number of networked components, a level of complexity has been reached which is difficult to handle using traditional development processes. The automotive industry addresses this problem through a paradigm shift from a hardware-, component-driven to a requirement- and function-driven development process, and a stringent standardization of infrastructure elements. One central standardization initiative is the AUTomotive Open System ARchitecture (AUTOSAR). AUTOSAR was founded in 2003 by major OEMs and Tier1 suppliers and now includes a large number of automotive, electronics, semiconductor, hard- and software companies.
Technical Paper

Active Fuel Management™ Technology: Hardware Development on a 2007 GM 3.9L V-6 OHV SI Engine

2007-04-16
2007-01-1292
In the North American automotive market, cylinder deactivation by means of engine valve deactivation is becoming a significant enabler in reducing the Brake Specific Fuel Consumption (BSFC) of large displacement engines. This allows for the continued market competitiveness of large displacement spark ignition (SI) engines that provide exceptional performance with reduced fuel consumption. As an alternative to a major engine redesign, the Active Fuel Management™ (AFM™) system is a lower cost and effective technology that provides improved fuel economy during part-load conditions. Cylinder deactivation is made possible by utilizing innovative new base engine hardware in conjunction with an advanced control system. In the GM 3.9L V-6 Over Head Valve (OHV) engine, the standard hydraulic roller lifters on the engine's right bank are replaced with deactivating hydraulic roller lifters and a manifold assembly of oil control solenoids.
Technical Paper

Analysis of Hollow Hyper-Elastic Gaskets Filled with Air Using Fluid Cavity Approach

2022-10-05
2022-28-0069
Hyper-elastic seals are extensively used in automotive applications for sealing various joints in assembly. They are also used in sealing battery packs. They are used in various sizes and shapes. Most of the gaskets used are solid gaskets. Hollow gaskets are also being used. Hollow gaskets typically have a fluid like air trapped inside. Analyzing these hollow gaskets also requires involving the physics of the fluid inside. The trapped fluid affects the performance of the gasket like contact pressure and width. Objective of this study is to analyze the hollow gasket performance including the effect of air trapped inside. The effect of air on performance of the hollow seal is also studied. Fluid Cavity capability in ABAQUS was selected after literature study to simulate the effect of trapped fluid (Air) on seal performance.
Technical Paper

Automotive Materials Engineering Challenges and Solutions for the Use of Ethanol and Methanol Blended Fuels

2010-04-12
2010-01-0729
Economic market forces and increasing environmental awareness of gasoline have led to interest in developing alternatives to gasoline, and extending the current global supply for transportation fuels. One viable strategy is the use of alternative alcohol fuels for combustion engines, with ethanol and methanol in various concentration ranges proposed and in-use. Utilizing and citing data from this review, a comprehensive overview of the materials selection and engineering challenges facing metals, plastics and elastomers are presented. The engineering approach and solution-sets discussed will focus on production feasibility and implementation. The effects from the fuel chemistry and quality of fuel ethanol produced on the related vehicle components are discussed.
Journal Article

Calculation of Heating Value for Gasoline Containing Ethanol

2010-05-05
2010-01-1517
Ethanol for use in automotive fuels can be made from renewable feedstocks, which contributes to its increased use in recent years. There are many differences in physical and chemical properties between ethanol and petrochemicals refined from fossil oil. One of the differences is its energy content. The energy content, or heating value, is an important property of motor fuel, since it directly affects vehicle fuel economy. While the energy content can be measured by combustion of the fuel in a bomb, the test is time-consuming and expensive. It is generally satisfactory and more convenient to estimate that property from other commonly-measured fuel properties. Several standardized empirical methods have been developed in the past for estimating the energy content of hydrocarbon fuels such as gasoline, diesel fuel, and jet fuel.
Technical Paper

Characterization of Methanol and Ethanol Sprays from Different DI Injectors by Using Mie-scattering and Laser Induced Fluorescence at Potential Engine Cold-start Conditions

2010-04-12
2010-01-0602
A laser sheet imaging system with Mie-scattering and Laser Induced Fluorescence (LIF) was used to investigate the spray characteristics of gasoline, methanol and ethanol fuels. A range of conditions found in today's gasoline engines were investigated including that observed during engine cold-start. Both a swirl injector and a multi-hole fuel injector were examined for each of the three fuels. A combination of the second harmonic (532 nm) and the fourth harmonic (266 nm) was generated simultaneously using a Nd:YAG laser system to illuminate the spray. The Mie-scattering technique was used to characterize the liquid phase of the spray while the LIF technique was used to detect a combination of liquid and vapor phases. While gasoline naturally fluoresced, the dopant TEA was added to the methanol and ethanol fuels as a fuel tracer. The Mie-scattering and LIF signals were captured simultaneously using a CCD camera along with an image doubler.
Journal Article

Characterizing the Onset of Manual Transmission Gear Rattle Part I: Experimental Results

2009-05-19
2009-01-2063
The objective of this investigation is to characterize the ability of loose gears to resist rattle in a manual transmission driven by an internal combustion engine. A hemi-anechoic transmission dynamometer test cell with the capability to produce torsional oscillations is utilized to initiate gear rattle in a front wheel drive (FWD) manual transmission, for a matrix of operating loads and selected gear states. A signal processing technique is derived herein to identify onset of gear rattle resulting from a standardized set of measurements. Gear rattle was identified by a distinct change in noise and vibration measures, and correlated to gear oscillations by a computed quantity referred to as percent deviation in normalized gear speed. An angular acceleration rattle threshold is defined based upon loose gear inertia and drag torque. The effects of mean speed, mean and dynamic torque, and gear state on the occurrence of loose gear rattle are reported.
Journal Article

Characterizing the Onset of Manual Transmission Gear Rattle Part II: Analytical Results

2009-05-19
2009-01-2069
Lumped parameter analysis is a simple and commonly used technique for performing torsional analysis or design parameter sensitivity studies on automotive powertrains and drivelines. The purpose of this paper is to demonstrate the application of lumped parameter analysis to manual transmission gear rattle. A representative model is developed for a FWD manual transmission, as operated in a dynamometer test cell. Once validated by experimental data, the model is used to investigate the influence on gear rattle of parameters not readily modified or controlled during hardware evaluations. A sinusoidal torque is used to excite the system, and a signal processing technique similar to that derived in Part I of this two part paper is used to identify the inception of gear rattle. Functional relations for torque losses associated with shafts, gears, seals, lubricating oil flow and bearing clearances as a function of basic design parameters are included within the model.
Technical Paper

Combustion Robustness Characterization of Gasoline and E85 for Startability in a Direct Injection Spark-Ignition Engine

2012-04-16
2012-01-1073
An experimental study and analysis was conducted to investigate cold start robustness of an ethanol flex-fuel spark ignition (SI) direct injection (DI) engine. Cold starting with ethanol fuel blends is a known challenge due to the fuel characteristics. The program was performed to investigate strategies to reduce the enrichment requirements for the first firing cycle during a cold start. In this study a single-cylinder SIDI research engine was used to investigate gasoline and E85 fuels which were tested with three piston configurations (CR11F, CR11B, CR15.5B - which includes changes in compression ratio and piston geometry), at three intake cam positions (95, 110, 125 °aTDC), and two fuel pressures (low: 0.4 MPa and high: 3.0 MPa) at 25°C±1°C engine and air temperature, for the first cycle of an engine start.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2008-04-14
2008-01-0725
The SAE FCV Safety Working Group has been addressing fuel cell vehicle (FCV) safety for over 8 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable to FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. J2578 is currently being updated to clarify and update requirements so that it will continue to be relevant and useful in the future. An update to SAE J1766 for post-crash electrical safety was also published to reflect unique aspects of FCVs and to harmonize electrical requirements with international standards. In addition to revising SAE J2578 and J1766, the Working Group is also developing a new Technical Information Report (TIR) for vehicular hydrogen systems (SAE J2579).
Technical Paper

Developing Safety Standards for FCVs and Hydrogen Vehicles

2006-04-03
2006-01-0326
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has published and is developing standards for FCVs and hydrogen vehicles. SAE J2578 was the first document published by the working group. The document is written from an overall vehicle perspective and deals with the integration of fuel cell and hydrogen systems in the vehicle and the management of risks associated with these systems. Since the publishing of SAE J2578, the working group has updated SAE J1766 regarding post-crash electrical safety and is developing SAE J2579 which deals with vehicular hydrogen systems.
Technical Paper

Development and Validation of Diamond-Like Carbon Coating for a Switching Roller Finger Follower

2012-09-24
2012-01-1964
An advanced variable valve actuation system is developed that requires a coating with high stress loading capability on the sliding interfaces to enable compact packaging solutions for gasoline passenger car applications. The valvetrain system consists of a switching roller bearing finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve. The SRFF contains two slider pads and a single roller to provide discrete variable valve lift capability on the intake valves. These components are installed on a four cylinder gasoline engine. The motivation for designing this type of variable valve actuation system is targeted to improve fuel economy by reducing the air pumping losses during partial load engine operation. This paper addresses the technology developed to utilize a Diamond-like carbon (DLC) coating on the slider pads of the SRFF.
Technical Paper

Dynamic Analysis of a 3D Finger Follower Valve Train System Coupled with Flexible Camshafts

2000-03-06
2000-01-0909
A 3D dynamic model has been developed to investigate the dynamic response of a finger-follower cam system by considering the interaction between valve train and camshaft. The torsional moments being different for each cam cause the torsional vibrations of the camshaft. The resulting speed fluctuations of the cam affect the dynamics of other valve train components including the ultimate valve motion. To better represent the critical parts of the valve train, special attention was given to the cam and follower and to valve springs. The cam and follower are treated as a force contact relation so parts can separate and impact again. The valve springs are now treated as flexible bodies and important mass effects and coil contact events are captured during the simulation. The mass effects are associated with spring surge that occurs at high speed. Coil contact occurs when the individual coil in the spring collides. One bank of a V6 engine with overhead twin cams is modeled in this study.
Technical Paper

Effect of Planetary Pinion Bearing Lubrication Methods on Operating Temperature and Life

1998-02-23
981096
In this study two planetary gearset pinion needle bearing lubrication methods - forced flow into the bearings and splash lubrication were evaluated for their cooling effectiveness and their potential to improve bearing life. Bearing operating temperatures were measured by placing thermocouples in the support pins. Life tests were then run under “good” and “poor” lubrication conditions to determine the effect of lubrication on bearing life.
Technical Paper

Elemental Composition Determination and Stoichiometric Air-Fuel Ratios of Gasoline Containing Ethanol

2010-10-25
2010-01-2112
Carbon, hydrogen and oxygen are major elements in modern fuels. Varying combinations of these elements in motor fuel alter the stoichiometric air-fuel ratio (A/F). Stoichiometric A/F ratio is an important parameter in engine calibration affecting vehicle performance, emissions and fuel economy. With increasing use of ethanol in automotive fuels in recent years, since it can be made from renewable feedstocks, oxygen contents in fuel are increasing. Oxygen contents can be around 1.7 mass % in European E5 gasoline or 3.5 mass % in U.S. E10 gasoline and up to 29 mass % in E85 fuel. The increase in oxygen content of fuel has resulted in changes in other physical and chemical properties due to the differences between ethanol and hydrocarbons refined from fossil oil. A previous paper (SAE 2010-01-1517) discussed the change in energy content of automotive fuel and the estimation of net heating values from common fuel properties.
Journal Article

Estimation of Elemental Composition of Diesel Fuel Containing Biodiesel

2013-10-14
2013-01-2600
Carbon, hydrogen and oxygen are major elements in vehicle fuels. Knowledge of fuels elemental composition is helpful in addressing its performance characteristics. Carbon, hydrogen and oxygen composition is an important parameter in engine calibration affecting vehicle performance, emissions and fuel economy. Biodiesel, a fuel comprised of mono-alkyl esters of long-chain fatty acids also known as Fatty Acid Methyl Esters(FAME), derived from vegetable oils or animal fats, has become an important commercial marketplace automotive fuel in the United States (US) and around the world over last few years. FAME biodiesels have many chemical and physical property differences compared to conventional petroleum based diesel fuels. Also, the properties of biodiesel vary based on the feedstock chosen for biodiesel production. One of the key differences between petroleum diesel fuels and biodiesel is the oxygen content.
Journal Article

Functional Requirements to Exceed the 100 kW/l Milestone for High Power Density Automotive Diesel Engines

2017-09-04
2017-24-0072
The paper describes the challenges and results achieved in developing a new high-speed Diesel combustion system capable of exceeding the imaginative threshold of 100 kW/l. High-performance, state-of-art prototype components from automotive diesel technology were provided in order to set-up a single-cylinder research engine demonstrator. Key design parameters were identified in terms boost, engine speed, fuel injection pressure and injector nozzle flow rates. In this regard, an advanced piezo injection system capable of 3000 bar of maximum injection pressure was selected, coupled to a robust base engine featuring ω-shaped combustion bowl and low swirl intake ports. The matching among the above-described elements has been thoroughly examined and experimentally parameterized.
X