Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

2007-05-15
2007-01-2231
This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Journal Article

Characterizing the Onset of Manual Transmission Gear Rattle Part I: Experimental Results

2009-05-19
2009-01-2063
The objective of this investigation is to characterize the ability of loose gears to resist rattle in a manual transmission driven by an internal combustion engine. A hemi-anechoic transmission dynamometer test cell with the capability to produce torsional oscillations is utilized to initiate gear rattle in a front wheel drive (FWD) manual transmission, for a matrix of operating loads and selected gear states. A signal processing technique is derived herein to identify onset of gear rattle resulting from a standardized set of measurements. Gear rattle was identified by a distinct change in noise and vibration measures, and correlated to gear oscillations by a computed quantity referred to as percent deviation in normalized gear speed. An angular acceleration rattle threshold is defined based upon loose gear inertia and drag torque. The effects of mean speed, mean and dynamic torque, and gear state on the occurrence of loose gear rattle are reported.
Journal Article

Characterizing the Onset of Manual Transmission Gear Rattle Part II: Analytical Results

2009-05-19
2009-01-2069
Lumped parameter analysis is a simple and commonly used technique for performing torsional analysis or design parameter sensitivity studies on automotive powertrains and drivelines. The purpose of this paper is to demonstrate the application of lumped parameter analysis to manual transmission gear rattle. A representative model is developed for a FWD manual transmission, as operated in a dynamometer test cell. Once validated by experimental data, the model is used to investigate the influence on gear rattle of parameters not readily modified or controlled during hardware evaluations. A sinusoidal torque is used to excite the system, and a signal processing technique similar to that derived in Part I of this two part paper is used to identify the inception of gear rattle. Functional relations for torque losses associated with shafts, gears, seals, lubricating oil flow and bearing clearances as a function of basic design parameters are included within the model.
Technical Paper

Correlated Simulation of Pseudo Transient Torque Converter Clutch Engagement Using Coupled Fluid Structure Interaction

2023-04-11
2023-01-0457
This investigation utilizes a correlated fluid-structure interaction (FSI) model of the torque converter and clutch assembly to perform a pseudo transient clutch engagement at steady state operating conditions. The pseudo transient condition consists of a series of nine steady state simulations that transition the torque converter clutch from fully released to near full lockup at a constant input torque and output speed representative of a highway cruising speed. The flow and pressured field of the torque converter torus and clutch are solved using a CFD model and then passed along to a transient structural model to determine the torque capacity of the lockup clutch. Bulk property assumptions regarding the friction material, deformation of the clutch plate, and deflection of supporting structures were made to simplify the model setup, run time, and solution convergence.
Technical Paper

Methods of Pegging Cylinder Pressure to Maximize Data Quality

2019-04-02
2019-01-0721
Engine cylinder pressure is traditionally measured with a piezo-electric pressure transducer, and as such, must be referenced or pegged to a known value. Frequently, the cylinder pressure is pegged to the pressure in the intake manifold plenum whereby the manifold absolute pressure (MAP) at the end of the intake stroke is measured and the cylinder pressure trace for the entire cycle is adjusted such that the cylinder pressure is set equal to the manifold pressure at the end of the intake stroke. However, any error in pegging induces an error in the cylinder pressure trace, which has an adverse effect on the entire combustion analysis. This research is focused on assessing the pegging error for several pegging methods across a wide range of engine operating conditions, and ultimately determining best practices to minimize error in pegging and the calculated combustion metrics. The study was conducted through 1D simulations using the commercially available GT-Power.
X