Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

A Robust Preignition Rating Methodology: Evaluating the Propensity to Establish Propagating Flames under Real Engine Conditions

2017-10-08
2017-01-2241
In this work, an experimental and analysis methodology was developed to evaluate the preignition propensity of fuels and engine operating conditions in an SI engine. A heated glow plug was introduced into the combustion chamber to induce early propagating flames. As the temperature of the glowplug varied, both the fraction of cycles experiencing these early flames and the phasing of this combustion in the engine cycle varied. A statistical methodology for assigning a single-value to this complex behavior was developed and found to have very good repeatability. The effects of engine operating conditions and fuels were evaluated using this methodology. While this study is not directly studying the so-called stochastic preignition or low-speed preignition problem, it studies one aspect of that problem in a very controlled manner.
Technical Paper

A Study on the Camshaft Lobe Microstructure Obtained by Different Processing

2012-10-02
2012-36-0499
The present work aims to characterize the microstructure of valvetrain camshaft lobes that are currently applied in the automotive industry, obtained by different processing routes. The cam lobe microstructure has been assessed by microscopy, whereas the mechanical properties by hardness profile measurements on the surface region. Microconstituents type and form, composing the final microstructure at the cam lobe work region, are defined by the casting route and/or post-heat treatment process other than alloy chemical composition, so that knowledge and control of processing route is vital to assure suitable valvetrain system assembly performance and durability. Most of the mechanical solicitations on the part occur at the interface between cam and follower; the actual contact area is significantly smaller than the apparent area. As a result, the microstructure at and near the surface performs a direct role on the performance of the valvetrain, cam lobe and its counterpart.
Technical Paper

Automated Fabrication for Low-Volume Applications

2020-12-08
2020-01-5103
Currently, the dominant technology used in the manufacture of mass-market automobile structures is sheet-metal stamping because of its suitability for producing accurate, strong, durable components in large quantities [1]. While cost-effective and fast for high-volume applications, the cost of manufacturing stamping dies is difficult to profitably amortize over a low-volume product in any but the most high-priced vehicle segments. This study examines the application of automated fabrication technologies as an alternative to stamping for the production of low-volume body structure components, including the impacts on both design and performance.
Technical Paper

Engine Component Effects on Spark-Ignition Caused Radio Frequency Interference (RFI)

2007-04-16
2007-01-0360
The objective of this paper is to propose a new model in the identification of a contributing factor to the generation of Radio Frequency Interference (RFI) due to the operation of a spark-ignited engine. This model incorporates parameters in the electrical operation of the ignition system components and their interaction with the engine mechanical structure, which is also used as a circuit component (the ignition system “ground”). T he model was developed as a result of analysis of numerous studies that have been conducted over the years in an attempt to identify why RFI characteristics can differ when using identical components on different engines, or locating the components in different locations on identical engines. This situation is a problem due to the resulting uncertainty with respect to the determination of what is the optimum vehicle ignition system configuration to meet all electrical and RFI or electromagnetic compatibility (EMC) requirements.
Technical Paper

Impact of Ultra Thinwall Catalyst Substrates for TIER2 Emission Standards

2003-03-03
2003-01-0658
The impact of ultra thinwall catalysts on TIER2 emission performance, packaging and total system cost was evaluated. The primary focus was to compare ultra-thinwall and thinwall cell configurations (400/3, 400/4, 600/2, 600/3, 600/3 hex, 900/2, and 1200/2) with a baseline 600/4 at constant substrate volume, washcoat and PGM loading. Other areas investigated included the evaluation of decreasing catalyst volume while maintaining constant or increased mass transfer capabilities while holding washcoat and PGM loadings constant. The emissions impact of varying washcoat and PGM loading was measured on specific substrates, including a comparison of square to hex cell. Backpressure for each configuration was calculated with the Corning substrate pressure drop modeling tool. Converters were rapid aged on dynamometers reflecting approximately a 50,000 mile aged performance. Emission testing was completed using the FTP test cycle.
Journal Article

Integration of Component Design Data for Automotive Turbocharger with Vehicle Fault Model Using JA6268 Methodology

2017-03-28
2017-01-1623
Suppliers and integrators are working with SAE’s HM-1 standards team to develop a mechanism to allow “Health Ready Components” to be integrated into larger systems to enable broader IVHM functionality (reference SAE JA6268). This paper will discuss how the design data provided by the supplier of a component/subsystem can be integrated into a vehicle reference model with emphasis on how each aspect of the model is transmitted to minimize ambiguity. The intent is to enhance support for the analytics, diagnostics and prognostics for the embedded component. In addition, we describe functionality being delegated to other system components and that provided by the supplier via syndicated web services. As a specific example, the paper will describe the JA6268 data submittal for a typical automotive turbocharger and other engine air system components to clarify the data modeling and integration processes.
Technical Paper

Powertrain Mounting Robust Evaluation Methodology Utilizing Minimal Hardware Resources

2017-06-05
2017-01-1823
Powertrain mounting systems design and development involves creating and optimizing a solution using specific mount rates and evaluation over multiple operating conditions. These mount rates become the recommended “nominal” rates in the specifications. The powertrain mounts typically contain natural materials. These properties have variation, resulting in a tolerance around the nominal specification and lead to differences in noise and vibration performance. A powertrain mounting system that is robust to this variation is desired. The design and development process requires evaluation of these mounts, within tolerance, to ensure that the noise and vibration performance is consistently met. During the hardware development of the powertrain mounting system, a library of mounts that include the range of production variation is studied. However, this is time consuming.
Technical Paper

Simulating Complex Automotive Assembly Tasks using the HUMOSIM Framework

2009-06-09
2009-01-2279
Efficient methods for simulating operators performing part handling tasks in manufacturing plants are needed. The simulation of part handling motions is an important step towards the implementation of virtual manufacturing for the purpose of improving worker productivity and reducing injuries in the workplace. However, industrial assembly tasks are often complex and involve multiple interactions between workers and their environment. The purpose of this paper is to present a series of industrial simulations using the Human Motion Simulation Framework developed at the University of Michigan. Three automotive assembly operations spanning scenarios, such as small and large parts, tool use, walking, re-grasping, reaching inside a vehicle, etc. were selected.
Technical Paper

Structural and Cost Evaluation of Snap Fits used in Connections of Vehicle Door Trim Panel Components with FEA Assist

2017-11-07
2017-36-0195
Among the most important finishing structures of a vehicle interior, the door trim panels reduce external noises, present ergonomic concepts generating comfort, improve appearance, and provide objects storage, knobs and buttons. The panels usually composed of several molded parts (trim, armrest, etc.) connected to each other also have structural function as support closing loads, protect occupants of door internal mechanisms, energy absorption in side impacts and resist misuse conditions. Therefore, these trims usually made of polymeric materials must to present good structural integrity, demanding appropriate connections between components to have good load distribution. The connections between parts can be made using bolts, interference fits (like self-locking), welding tubular plastic towers (heat stakes), or clips (such as snap fits) and last two are the most common due to be cheap and with good retention.
Technical Paper

The Immersed Boundary CFD Approach for Complex Aerodynamics Flow Predictions

2007-04-16
2007-01-0109
Standard CFD methods require a mesh that fits the boundaries of the computational domain. For a complex geometry the generation of such a grid is time-consuming and often requires modifications to the model geometry. This paper evaluates the Immersed Boundary (IB) approach which does not require a boundary-conforming mesh and thus would speed up the process of the grid generation. In the IB approach the CAD surfaces (in Stereo Lithography -STL- format) are used directly and this eliminates the surface meshing phase and also mitigates the process of the CAD cleanup. A volume mesh, consisting of regular, locally refined, hexahedrals is generated in the computational domain, including inside the body. The cells are then classified as fluid, solid and interface cells using a simple ray-tracing scheme. Interface cells, correspond to regions that are partially fluid and are intersected by the boundary surfaces.
X