Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2013 SRT Viper Carbon Fiber X-Brace

2013-04-08
2013-01-1775
The 2013 SRT Viper Carbon Fiber X-Brace, styled by Chrysler's Product Design Office (PDO), is as much of a work of art as it is an engineered structural component. Presented in this paper is the design evolution, development and performance refinement of the composite X-Brace (shown in Figure 1). The single-piece, all Carbon Fiber Reinforced Plastic (CFRP) X-Brace, an important structural component of the body system, was developed from lightweight carbon fiber material to maximize weight reduction and meet performance targets. The development process was driven extensively by virtual engineering, which applied CAE analysis and results to drive the design and improve the design efficiency. Topology optimization and section optimization were used to generate the initial design's shape, form and profile, while respecting the package requirements of the engine compartment.
Journal Article

A Critical Assessment of Factors Affecting the Flammability of R-1234yf in a Frontal Collision

2014-04-01
2014-01-0419
An evaluation methodology has been developed for assessing the suitability of R-1234yf in vehicles. This relates primarily to evaluating the flammability of R-1234yf in the engine compartment during a frontal collision. This paper will discuss the process followed in the methodology, the technical rationale for this process, and the results of the analysis. The specific types of analysis included in the methodology are: exhaust-system thermal characterization, computer simulated crash tests, actual crash tests, teardown and examination of crashed parts, and releases of refrigerant onto hot exhaust manifolds. Each type of analysis was logically ordered and combined to produce a comprehensive evaluation methodology. This methodology has been applied and demonstrates that R-1234yf is difficult to ignite when factors that occur in frontal crashes are simultaneously considered.
Journal Article

A DFSS Approach to Determine Automatic Transmission Gearing Content for Powertrain-Vehicle System Integration

2014-04-01
2014-01-1774
This investigation utilizes a DFSS analysis approach to determine automatic transmission gear content required to minimize fuel consumption for various powertrain - vehicle systems. L18 and L27 inner arrays with automatic transmission design and shift pattern constraint parameters were varied to determine their relative influence on fuel consumption. An outer noise array consisting of two vehicles with various engines, final drive ratios and legislated emissions test cycles was used to make a robust transmission selection based on minimizing fuel consumption. The full details of the DFSS analysis method and assumptions are presented along with a detailed examination of the results. With respect to transmission design parameters, parasitic spinloss and gear mesh efficiency were found to be most important followed by the number of gears. The DFSS analysis further revealed that unique transmission design formulations are potentially required for widely varying engines.
Technical Paper

A Design for Six Sigma Approach to Optimize a Front-Wheel-Drive Transmission for Improved Efficiency and Robustness

2011-04-12
2011-01-0720
Environmental concerns and government regulations are factors that have led to an increased focus on fuel economy in the automotive industry. This paper identifies a method used to improve the efficiency of a front-wheel-drive (FWD) automatic transmission. In order to create improvements in large complex systems, it is key to have a large scope, to include as much of the system as possible. The approach taken in this work was to use Design for Six Sigma (DFSS) methodology. This was done to optimize as many of the front-wheel-drive transmission components as possible to increase robustness and efficiency. A focus of robustness, or consistency in torque transformation, is as important as the value of efficiency itself, because of the huge range of usage conditions. Therefore, it was necessary to find a solution of the best transmission component settings that would not depend on specific usage conditions such as temperatures, system pressures, or gear ratio.
Journal Article

A Fatigue Life Estimation Technique for Body Mount Joints

2012-04-16
2012-01-0733
A body mount joint is a typical clamped joint that is under severe loading conditions, due to its structural function services as a gateway of load path between body and frame of an automotive vehicle. Stresses/strains on durability concerned components at the joint cannot be captured accurately by using the pseudo stress analysis approach because of the complexity of stress state generated by the pre-stress from clamp load, contacts between the components and nonlinear material properties. In this paper, development of a technique for fatigue life estimation of the joint is described in detail.
Technical Paper

A Mesoscopic-Stress Based Fatigue Limit Theory - A Revised Dang Van's Model

2014-04-01
2014-01-0902
Dang Van (Dang Van et al., 1982 and Dang Van, 1993) states that for an infinite lifetime (near fatigue limit), crack nucleation in slip bands may occur at the most unfavorable oriented grains, which are subject to plastic deformation even if the macroscopic stress is elastic. Since the residual stresses in these plastically deformed grains are induced by the restraining effect of the adjacent grains, it is assumed that the residual stresses are stabilized at a mesoscopic level. These stresses are currently approximated by the macroscopic hydrostatic stress defined by the normal stresses to the faces of an octahedral element oriented with the faces symmetric to the principal axis; mathematically they are equal to each other and they are the average of the principal stresses.
Technical Paper

A New Method of d'Alembert's Principle Finite Element Based Fatigue Calculation with Input of Loads and Accelerations

2013-04-08
2013-01-1003
The common practice in finite element based fatigue calculation with multiple channels of road load is to perform a set of unit load static stress analysis and conduct stress time history construction later during fatigue calculation. The main advantage of this so-called quasi-static finite element based fatigue calculation is to avoid time-consuming dynamic stress analysis and also reduce static stress analysis from millions of real load cases to a few dozens unit-load cases. The main disadvantage of this quasi-static finite element based fatigue calculation is the absence of vibration-induced stresses in stress time history construction and fatigue analysis. A decade ago, a modal transient finite element based fatigue calculation was proposed to introduce vibration-induced stresses into finite element based fatigue calculation. The idea is to add vibration-induced modal stresses to load-induced instant stresses in stress time history construction and fatigue calculation.
Technical Paper

A Practical Failure Limit for Sheared Edge Stretching of Automotive Body Panels

2010-04-12
2010-01-0986
Edge cracking is one of the major formability concerns in advanced high strength steel (AHSS) stamping. Although finite element analysis (FEA) together with the Forming Limit Diagram has been widely used, it has not effectively predicted edge cracking. Primary problems in developing a methodology to insure that parts are safe from edge cracking are the lack of an effective failure criterion and a simple and accurate measurement method that is not only usable in both die tryout and production but also can be verified by finite element analysis. The intent of this study is to develop a methodology to ensure that parts with internal cutouts, such as a body side panel can be produced without edge cracking. During tryout and production, edge cracking has traditionally been detected by visual examination, but this approach is not adequate for ensuring freedom from edge cracking.
Technical Paper

A Practical Procedure to Predict AIS Inlet Noise Using CAE Simulation Tools

2013-04-08
2013-01-1004
The air induction system (AIS), which provides clean air to the engine for combustion, is very important for engine acoustics. A practical CAE procedure to predict AIS inlet noise is presented in this paper. GT-Power, a commercially available software program can be used to simulate the engine performance and predict air induction noise. The accuracy of GT-Power is dependent on many variables, such as: proper duct discretization size, proper number of flow splits to model the air box and the capturing of the correct resonator geometry for tuning frequency. Since GT-Power is based on a 1D assumption, several iterations need be performed to model the complex AIS components, such as, irregular shaped air box, resonator volume, porous ducts and perforated pipes. Because of this, the GT-Power AIS model needs to be correlated to test data using transmission loss data.
Technical Paper

A Technique to Predict Thermal Buckling in Automotive Body Panels by Coupling Heat Transfer and Structural Analysis

2014-04-01
2014-01-0943
This paper describes a comprehensive methodology for the simulation of vehicle body panel buckling in an electrophoretic coat (electro-coat or e-coat) and/or paint oven environment. The simulation couples computational heat transfer analysis and structural analysis. Heat transfer analysis is used to predict temperature distribution throughout a vehicle body in curing ovens. The vehicle body temperature profile from the heat transfer analysis is applied as an input for a structural analysis to predict buckling. This study is focused on the radiant section of the curing ovens. The radiant section of the oven has the largest temperature gradients within the body structure. This methodology couples a fully transient thermal analysis to simulate the structure through the electro-coat and paint curing environments with a structural, buckling analysis.
Journal Article

A Two Degree of Freedom, Lumped Inertia Model for Automatic Transmission Clutch-to-Clutch Shift Dynamics

2014-04-01
2014-01-1782
This paper presents a methodology to represent automatic transmission clutch-to-clutch shift dynamics with a two degree of freedom, lumped inertia model. The method of reducing the automatic transmission to a lumped, two inertia model as a function of shift and input shaft acceleration is detailed using a full kinematic representation of the automatic transmission. For a given clutch-to-clutch shift maneuver there are two dependent equations that utilize the two lumped inertias and represent the response of the transmission system from input to output shaft. Applicability of the method is shown for planetary automatic and layshaft dual clutch transmissions. Typical clutch-to-clutch shift maneuvers are illustrated with the two inertia model for power on upshifts and downshifts.
Technical Paper

Acoustic Performance Evaluation of Hood Liner Constructions

2015-06-15
2015-01-2206
In automotive noise control, the hood liner is an important acoustic part for mitigating engine noise. The random incidence absorption coefficient is used to quantify the component level acoustic performance. Generally, air gaps, type of substrate materials, density of the substrate materials and Air Flow Resistivity (AFR) of the cover scrim are the dominant control factors in the sound absorption performance. This paper describes a systematic experimental investigation of how these control factors affect flat sample performance. The first stage of this study is full factorial measurement based on current available solutions from sound absorber suppliers. The acoustic absorption of different hood liner constructions, with variations in materials, density, air gaps, and scrims was measured.
Journal Article

Advancement in Vehicle Development Using the Auto Transfer Path Analysis

2014-04-01
2014-01-0379
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
Technical Paper

Algorithm-in-the-Loop with Plant Model Simulation, Reusable Test Suite in Production Codes Verification and Controller Hardware-in-the-Loop Bench Testing

2010-04-12
2010-01-0367
In a math-based control algorithm design, model-based simulation and testing are very important as an integral part of design process. There are many advantages of using modeling and simulation in the algorithm design. In this paper, Algorithm-in-the-Loop and Hardware-in-the-Loop approaches are adopted for a transmission control algorithm development. A practical approach is introduced on how to test the control algorithms with a reliable plant (virtual engine, transmission, and vehicle) model in the closed-loop simulation. In using combination of open-loop and closed-loop simulations, various key behavior test cases are developed and documented for the success of control algorithms development. Secondly, the same test cases are reused and verified against the production codes, which are automatically generated from the math-based control algorithm models.
Technical Paper

An Investigative Study of Sudden Pressure Increase Phenomenon Across the DPF

2014-04-01
2014-01-1516
Diesel particulate filter (DPF) is a widely used emission control device on diesel vehicles. The DPF captures the particulate matter coming from the engine exhaust and periodically burns the collected soot via the regeneration process. There are various trigger mechanisms for this regeneration, such as distance, time, fuel and simulation. Another method widely used in the industry is the pressure drop across the filter. During calibration, relation between the pressure sensor reading and soot mass in the filter is established. This methodology is highly effective in successful DPF operation as pressure sensor is a live signal that can account for any changes in engine performance over time or any unforeseen hardware failures. On the other hand, any erroneous feedback from the sensor can lead to inaccurate soot mass prediction causing unnecessary regenerations or even needless DPF plugging concerns.
Journal Article

Analytical Study of a Dog Clutch in Automatic Transmission Application

2014-04-01
2014-01-1775
A dog clutch, if successfully implemented in an automatic transmission, provides better packaging and the potential for improved fuel economy. The technical requirements for this concept are examined through modeling and simulation. As a first step, a physics-based component level model is developed that provides an understanding of the basic contact and impact dynamics. The model is compared to a built-in AMESim block to establish confidence. This component level model is then integrated into a powertrain system model within the AMESim environment. As a test bed, the powertrain model is exercised to simulate a friction plate to dog clutch shift in a 6-speed automatic transmission. The analysis helps to define the slip speed target at the onset of the dog clutch engagement while ensuring shift requirements are met. Finally, the model is validated by comparing the simulated results with measured dynamometer data.
Technical Paper

Application of Modeling Technology in a Turbocharged SI Engine

2013-04-08
2013-01-1621
Improvements to 1D engine modeling accuracy and computational speed have led to greater reliance on this simulation technology during the engine development process. The benefits of modeling show up in many ways: increased simulation iterations for better optimization, reduction in prototype hardware iterations, reduction in program timing and overall cost. In this study a 1D GT-Power model of a turbocharged engine system was used to assist in the initial design phase and throughout the program. The model was developed using Chrysler Group LLC proprietary modeling features for predictive combustion and knock event prediction. In all stages of this project the model's accuracy was improved through regular correlation with dynamometer data. This paper mainly focuses on engine compression ratio selection, turbocharger selection, and cycle-to-cycle variation/cylinder-to-cylinder variation reduction through the combination of 1D GT-Power model optimization and dynamometer tests.
Technical Paper

Application of the Glinka's ESED Criterion in Optimization Design

2014-04-01
2014-01-0912
In order to take into account the local material non-linear elastic-plastic effects generated by notches, Glinka proposed the equivalent strain energy density (ESED) Criterion which has been widely accepted and used in fatigue theory and calculation for the last few decades. In this paper, Glinka's criterion is applied to structural optimization design for elastic-plastic correction to consider material non-linear elastic-plastic effects. The equivalent (fictitious) stress was derived from Glinka's Criterion equation for the commonly used Ramberg-Osgood and bi-linear stress and strain relationships. This equivalent stress can be used as the stress boundary constraint threshold in structural optimization design to control the elastic-plastic stress or strain in nonlinear optimization.
Journal Article

Assessing Dirlik's Fatigue Damage Estimation Method for Automotive Applications

2012-04-16
2012-01-0757
Fatigue analysis in the time domain using the rainflow cycle counting algorithm is considered the most accurate method for estimating damage. Dirlik's method has been found to be very accurate for damage estimation in the frequency domain. Previous studies have demonstrated the usefulness of Dirlik's method for ocean engineering and wind turbines but few have shown how well Dirlik performs in automotive applications. This study compares Dirlik's method with the rainflow cycle counting and with other frequency domain methods. The study analyzes measured data for an automotive component subjected to five test track load conditions. In addition, fourteen of Dirlik's original spectra and seven additional spectra which combine sine and random spectra are studied. It was found that Dirlik's method predicts more damage than the rainflow cycle counting method when applied to the original data used in creating the method.
Technical Paper

Assessing the Likelihood of Binding in Distorted Stepped Radius Cylinder Bores

2014-04-01
2014-01-0395
Interference assessments of a stepped-radius power-train component moving within a deformed stepped bore often arise during engine and transmission development activities. For example, when loads are applied to an engine block, the block distorts. This distortion may cause a cam or crankshaft to bind or wear prematurely in its journals as the part rotates within them. Within an automatic transmission valve body, care must be taken to ensure valve body distortion under oil pressure, assembly, and thermal load does not cause spool valves to stick as they translate within the valve body. In both examples, the mechanical scenario to be assessed involves a uniform or stepped radius cylindrical part maintaining a designated clearance through a correspondingly shaped but distorted bore. These distortions can occur in cross-sections (“out-of-round”) or along the bore (in an “s” or “banana” shaped distortions).
X