Refine Your Search

Topic

Author

Search Results

Technical Paper

A Displacement-Approach for Liftgate Chucking Investigation

2012-04-16
2012-01-0217
A displacement-based CAE analysis is applied to liftgate chucking noise problems. A CAE simulation model of a small-size sport utility vehicle (SUV) is simulated with a set of realistic road loads as a time transient simulation. The model contains a trimmed vehicle, a liftgate and structural body-liftgate interface components such as the latch-striker wire, contact wedges and slam bumpers. Simulation design of experiments (DOE) is carried out with the model. As performance measures, the relative displacements at the contact points of the interface components are selected, since they are considered the direct cause of liftgate chucking. As design variables, body structure stiffness, liftgate stiffness, liftgate opening stiffness, stiffness characteristics of the interface components and additional liftgate mass are selected. Results of the simulation DOE is post-processed, and response surface models (RSM) are fit for the performance measures.
Technical Paper

A Numerical Approach to Evaluate the Aerodynamic Performance of Vehicle Exterior Surfaces

2011-04-12
2011-01-0180
This paper outlines a process to assess the aerodynamic performance of different vehicle exterior surfaces. The initial section of the paper summarizes the details of white-light scanning process that maps entire vehicle to points in Cartesian co-ordinate system which is followed by the conversion of scanned points to theme surface. The concept of point-cloud modeling is employed to generate a smooth theme surface from scanned points. Theme surfaces thus developed are stitched to under-body/under-hood (UB/UH) parts of the base vehicle and the numerical simulations were carried out to understand the aerodynamic efficiency of the surfaces generated. Specifics of surface/volume mesh generated, boundary conditions imposed and numerical scheme employed are discussed in detail. Flow field over vehicle exterior is thoroughly analyzed. A comparison study highlighting the effect of front grilles in unblocked condition along with air-dam on flow field has been provided.
Journal Article

Adjoint Method for Aerodynamic Shape Improvement in Comparison with Surface Pressure Gradient Method

2011-04-12
2011-01-0151
Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics. One specific goal of aerodynamic shape optimization is to predict the local shape sensitivities for aerodynamic forces. The availability of a reliable and efficient sensitivity analysis method will help to reduce the number of design iterations and the aerodynamic development costs. Among various shape optimization methods, the Adjoint Method has received much attention as an efficient sensitivity analysis method for aerodynamic shape optimization because it allows the computation of sensitivity information for a large number of shape parameters simultaneously.
Journal Article

Boundary Condition Effect on the Correlation of an Acoustic Finite Element Passenger Compartment Model

2011-04-12
2011-01-0506
Three different acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different models are a traditional model, an improved model, and an optimized model. The traditional model represents the passenger and trunk compartment cavities and the coupling between them through the rear seat cavity. The improved model includes traditional acoustic models of the passenger and trunk compartments, as well as equivalent-acoustic finite element models of the front and rear seats, parcel shelf, door volumes, instrument panel, and trunk wheel well volume. An optimized version of the improved acoustic model is developed by modifying the equivalent-acoustic properties. Modal analysis tests of a vehicle were conducted using loudspeaker excitation to identify the compartment cavity modes and sound pressure response to 500 Hz to assess the accuracy of the acoustic models.
Technical Paper

Design, Analysis, and Development Testing of Large Hood Plastic Mounted Trim Components

2011-04-12
2011-01-0490
Large hood mounted plastic trim components are subjected to complex and often extreme loading conditions. Typical loading conditions include solar and thermal cycling, as well as road and powertrain induced vibrations, aero lift and buffeting, and mechanical loads such as car wash. For the above components understanding and classifying the typical loading conditions is an essential and important step in achieving long term quality. This paper discusses different approaches to the design, analysis, development, and testing of plastic trim components. Samples of analysis and test results are presented to demonstrate how to identify and prevent the loss of the part function. Some useful guidelines and practices for addressing thermal expansion, dimensional variation, and redundancy in attachments are also discussed.
Technical Paper

Detection of Urea Injection System Faults for SCR Systems

2012-04-16
2012-01-0431
The urea injection is a key function in Urea-SCR NOx reduction system. As the tailpipe NOx emission standard becomes increasingly stringent, it is critical to diagnose the injection faults in order to guarantee the SCR DeNox functionality and performance. Particularly, a blocked injector may cause under-dosing of urea thus reduced DeNox functionality. Monitoring urea injection rate is one of the efficient methods for injection fault diagnosis. However, direct measurement of the urea mass flow is not feasible due to its high cost. This paper presents methods that are promising for detecting and isolating faults in urea injection by processing certain actuator signal and existing sensory measurements, e.g., the injector Pulse Amplitude Modulated (PAM) command and the pressure of the urea delivery line. No additional dedicated sensor is required. Three methods are discussed to detect urea injection system faults.
Journal Article

Development of Liftgate Hinge-to-Roof Sealing Gasket Material for Uncoated Steel Roof Panels

2011-04-12
2011-01-0072
The sealing of a lift gate hinge to the body structure is necessary to avoid both the onset of corrosion and to avoid water intrusion into the interior compartment. The hinge-to-body interface typically involves horizontal metal-to-metal surface contact, creating the perfect environment for moisture entrapment and corrosion initiation. The choice of body panel material (uncoated (bare) steel vs. coated (galvanized) steel) drives different sealing approaches especially when considering corrosion avoidance.
Technical Paper

Door Check Load Durability - Fatigue Life Prediction

2011-04-12
2011-01-0790
This paper describes an analytical methodology for predicting the fatigue life of a door system for check load durability cycles. A check stop load durability cycle occurs when a customer opens the door beyond the door detent position with a force applied on the check link or hinge check stops. This method combines Finite Element Analysis (FEA) model and fatigue code to compute the durability requirements. The FEA model consists of Door-in-White (DIW) on body with integrated hinge check link or independent check link. Nonlinear material, geometric and parts contact were considered for the door with body-in-white (BIW). Several door hinge designs, with integrated and independent check links, were investigated. Using the Von Mises stress and plastic strain from the above analysis, the fatigue life was predicted and compared with the test data. Integrating FEA and fatigue allows predicting the threshold total strain value, which is developed, for check load durability requirements.
Technical Paper

Dual Rate Jounce Bumper Design

2011-04-12
2011-01-0791
Jounce bumpers are the primary component by which vertical wheel travel is limited in our suspensions. Typically, the jounce bumper is composed of closed or open cell urethane material, which has relatively low stiffness at initial compression with highly progressive stiffness at full compression. Due to this highly progressive stiffness at high load, peak loads are extremely sensitive to changes in input energy (affected by road surface, tire size, tire pressure, etc.) A “Dual Rate Jounce Bumper” concept is described that reduces this sensitivity. Additionally, various mechanizations of the concept are described as well as the specific program benefits, where applicable.
Technical Paper

Effect of DPF Design Parameters on Fuel Economy and Thermal Durability

2012-04-16
2012-01-0847
Diesel particle filters (DPF) have become the standard and essential aftertreatment components for all on-road diesel engines used in the US and Europe. The OBD requirements for DPF are becoming rigorously strict starting from 2015 model year. The pressure sensor or other strategies currently used for DPF diagnostics will most likely become insufficient to meet the new OBD requirements and a post DPF soot sensor might be necessary. This means that it will be even more imperative to develop a DPF design that would not have any soot leaks in its emission lifetime, otherwise the DPF will become a high warranty item.
Technical Paper

Effect of Flow Forces on a Flow Control Variable Force Solenoid

2011-04-12
2011-01-0394
A system level analysis was carried out on the effect of flow forces on a flow control variable force solenoid (VFS) used in automatic transmissions. Classic flow force model was reviewed as a function of the pressure difference and the solenoid current. A force balance analysis was conducted on the spool valve in the VFS, in order to study the relationship among the control current, flow forces, spring forces, and flow area. Flow bench testing was used to characterize a specific flow control VFS by both the pressure drop and solenoid current, in forward and reverse flow directions. The behavior of flow control VFS valve is significantly affected by flow forces. A sub-system level model was thus created to predict the steady-state and dynamic behavior of the flow VFS valve, which can be used in a transmission system level analysis. The modeling results were compared against experimental data to show the validity of the methodology.
Technical Paper

Effects of Base Stocks on Lubricant Aeration

2011-04-12
2011-01-1210
Aeration properties of lubricants is an increasing concern as the design of powertrain components, specifically transmissions, continue to become more compact leading to smaller sumps and higher pressure requirements. Although good design practices are the most important factors in mitigating the aeration level of the fluid, the fluid properties themselves are also a contributing factor. This paper investigates the aeration properties of specific base oils commonly used to formulate modern transmission fluids using the General Motors Company Aeration Bench Test found in GMN10060. The test matrix includes thirteen different fluids representing a cross-section of base oil types, manufacturers, and viscosity grades. Per the procedure found in GMN10060, the bench test measures the aeration time, de-aeration time, and percent maximum aeration of the fluid at three temperatures, 60°C, 90°C, and 120°C. In the end, the results are compared with four commercially available transmission fluids.
Technical Paper

Effects of Thickness on Headliner Material Properties

2011-04-12
2011-01-0463
Headliner material plays an important role in occupant protection in situations involving head impact into the interior vehicle roof area. Accurate characterization of its mechanical properties is therefore extremely important for prediction of its behavior during interior impact assessment of a vehicle. Headliner material typically consists of two main layers: the substrate layer which provides structural integrity and impact protection, and the fabric-foam layer which provides proper interior fit and appearance. Both layers vary significantly in thickness and composition between different manufacturers. This paper investigates effects of the layer thickness on compressive strength and deformation of several different headliner materials.
Technical Paper

Estimating Variation in Roof Strength Test

2011-04-12
2011-01-1120
As part of the Federal Motor Vehicle Safety Standards, requirements for roof strength need to be met for all vehicles. On the other hand, automobile manufactures need to minimize vehicle mass for fuel economy and other objectives. It is important, therefore, for manufacturers to have a good understanding of the sources of variation in measured roof strength. An accurate estimation of such variation is important to achieving these objectives. This paper presents a method of using CAE simulation and vehicle tests to effectively estimate the range of variability in the roof crush tests. A number of vehicle and test variables which could potentially affect the measured roof strength were chosen, and their sensitivity was evaluated through CAE simulation. This knowledge of the sensitivity was then used to design a small number of vehicle tests, producing an estimation of the variation range in roof strength.
Journal Article

Evaluation of Dynamic Roof Deformation in Rollover Crash Tests

2011-04-12
2011-01-1093
Although the measured amount of roof deformation associated with a given rollover crash test is often the residual or post test deformation, rollover crash test researchers are aware that roof deformation occurs dynamically throughout the rollover event with varying magnitude. The challenge to quantifying dynamic roof deformation has been the lack of a reliable method to measure and record the dynamic roof deformation during the rollover test. Researchers have explored various methods to measure dynamic roof deformation including the use of film analysis of external targets, accelerometers, string potentiometers, and 3D photogrammetry. This paper discusses a series of simulated curb trip rollover tests conducted to study and compare different methodologies to measure and record dynamic roof deformation.
Technical Paper

Experimental Investigation of Light-Medium Load Operating Sensitivity in a Gasoline Compression Ignition (GCI) Light-Duty Diesel Engine

2013-04-08
2013-01-0896
The light-medium load operating range (4-7 bar net IMEP) presents many challenges for advanced low temperature combustion strategies utilizing low cetane fuels (specifically, 87-octane gasoline) in light-duty, high-speed engines. The overly lean overall air-fuel ratio (Φ≺0.4) sometimes requires unrealistically high inlet temperatures and/or high inlet boost conditions to initiate autoignition at engine speeds in excess of 1500 RPM. The objective of this work is to identify and quantify the effects of variation in input parameters on overall engine operation. Input parameters including inlet temperature, inlet pressure, injection timing/duration, injection pressure, and engine speed were varied in a ~0.5L single-cylinder engine based on a production General Motors 1.9L 4-cylinder high-speed diesel engine.
Technical Paper

Factors Moderating the Effectiveness of Rear Vision Systems: What Performance-Shaping Factors Contribute to Drivers' Detection and Response to Unexpected In-Path Obstacles When Backing?

2011-04-12
2011-01-0549
General Motors (GM) and the Virginia Tech Transportation Institute (VTTI) have partnered to conduct a series of studies characterizing the use and effectiveness of technologies designed to assist drivers while backing. A major emphasis of this research has been on Rear Vision Camera (RVC) systems that provide drivers with an enhanced view of the area behind the vehicle. RVC systems are intended to aid in positioning the vehicle when executing low-speed parking and backing-related tasks and are not necessarily well suited for detecting unexpected in-path obstacles (particularly if the RVC image is not coupled with object detection alerts issued to the driver).
Technical Paper

Ferritic Nitrocarburized Brake Rotors

2011-04-12
2011-01-0567
Ferritic Nitrocarburized (FNC) cast iron brake rotors are proposed as a means to improve corrosion resistance, improve brake lining wear, as well as reduce corrosion-induced pulsation of automotive brake rotors. FNC processing of finish machined brake rotors presents challenges with controlling distortion, i.e., lateral run out (LRO). Prior investigations of FNC brake rotors suggested grinding the rotors to correct distortion. Post grinding the FNC processed rotors may reduce the FNC layer with an accompanying reduction in performance. Stress relieving (SR) the casting prior to FNC was found beneficial in providing a dimensionally acceptable rotor. Dimensional analysis of the stress relieved and FNC processed rotors will be presented. Benefits of FNC processed rotors will be reviewed.
Technical Paper

Hood Slam Process Automator

2011-04-12
2011-01-1066
This paper deals with the development of a Hood Slam Process Automator (PA) to automate the pre-processing tasks of the virtual slam assessment with non-linear Nastran Transient Sol. 129 on all types of hoods. The slam analysis generally consumes a lot of analyst's time for building the slam models, typically six hours and is very tedious and has the potential for errors. The Hood Slam PA will automatically create and perform slam analysis pre-processing tasks within HyperMesh software such as creating latch striker interface, creating seals and bumpers with CBUSH1D elements, assigning transient slam speed to the hood and will finally generate the Nastran non-linear transient (Sol.129) hood slam analysis input files. The ready to run analysis input files will be submitted to the Nastran solver and the analysis results will then be post processed using HyperView software.
Technical Paper

Impact of Motor Capacitance on Vehicle Electrical System Transients

2011-04-12
2011-01-1009
The electrical architecture of today's automobiles employs a significant number of fractional horsepower motors to control wipers, windows, seats, etc. The typical motors are permanent magnet DC brush-commutated motors, often referred to as BM motors. These BM motors, while simple in design, have the inherent issue of creating short-duration, high-frequency electrical noise (caused by the constant interruption, or commutation, of the motor current). This electrical noise can readily lead to radio reception interference. In order to protect against this risk, a typical solution is to install a radio frequency (RF) filter internal to the motor. This filter generally includes a high-frequency ceramic or metal film capacitor across the motor terminals that connect to the vehicle electrical system.
X