Refine Your Search

Topic

Author

Search Results

Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Technical Paper

A Displacement-Approach for Liftgate Chucking Investigation

2012-04-16
2012-01-0217
A displacement-based CAE analysis is applied to liftgate chucking noise problems. A CAE simulation model of a small-size sport utility vehicle (SUV) is simulated with a set of realistic road loads as a time transient simulation. The model contains a trimmed vehicle, a liftgate and structural body-liftgate interface components such as the latch-striker wire, contact wedges and slam bumpers. Simulation design of experiments (DOE) is carried out with the model. As performance measures, the relative displacements at the contact points of the interface components are selected, since they are considered the direct cause of liftgate chucking. As design variables, body structure stiffness, liftgate stiffness, liftgate opening stiffness, stiffness characteristics of the interface components and additional liftgate mass are selected. Results of the simulation DOE is post-processed, and response surface models (RSM) are fit for the performance measures.
Technical Paper

A Numerical Approach to Evaluate the Aerodynamic Performance of Vehicle Exterior Surfaces

2011-04-12
2011-01-0180
This paper outlines a process to assess the aerodynamic performance of different vehicle exterior surfaces. The initial section of the paper summarizes the details of white-light scanning process that maps entire vehicle to points in Cartesian co-ordinate system which is followed by the conversion of scanned points to theme surface. The concept of point-cloud modeling is employed to generate a smooth theme surface from scanned points. Theme surfaces thus developed are stitched to under-body/under-hood (UB/UH) parts of the base vehicle and the numerical simulations were carried out to understand the aerodynamic efficiency of the surfaces generated. Specifics of surface/volume mesh generated, boundary conditions imposed and numerical scheme employed are discussed in detail. Flow field over vehicle exterior is thoroughly analyzed. A comparison study highlighting the effect of front grilles in unblocked condition along with air-dam on flow field has been provided.
Journal Article

Adjoint Method for Aerodynamic Shape Improvement in Comparison with Surface Pressure Gradient Method

2011-04-12
2011-01-0151
Understanding the flow characteristics and, especially, how the aerodynamic forces are influenced by the changes in the vehicle body shape, are very important in order to improve vehicle aerodynamics. One specific goal of aerodynamic shape optimization is to predict the local shape sensitivities for aerodynamic forces. The availability of a reliable and efficient sensitivity analysis method will help to reduce the number of design iterations and the aerodynamic development costs. Among various shape optimization methods, the Adjoint Method has received much attention as an efficient sensitivity analysis method for aerodynamic shape optimization because it allows the computation of sensitivity information for a large number of shape parameters simultaneously.
Technical Paper

An Approach to the Safety Design and Development of a Brake-by-Wire Control System

2011-04-12
2011-01-0212
The increasing usage of brake-by-wire systems in the automotive industry has provided manufacturers with the opportunity to improve both vehicle and manufacturing efficiency. The replacement of traditional mechanical and hydraulic control systems with electronic control devices presents different potential vehicle-level safety hazards than those presented by conventional braking systems. The proper design, development, and integration of a brake-by-wire control system requires that hazards are reasonably prevented or mitigated in order to maximize the safety of the vehicle operator, occupant(s), and passers-by.
Journal Article

Analysis of Various Operating Strategies for a Parallel-Hybrid Diesel Powertrain with a Belt Alternator Starter

2012-04-16
2012-01-1008
The sustainable use of energy and the reduction of pollutant emissions are main concerns of the automotive industry. In this context, Hybrid Electric Vehicles (HEVs) offer significant improvements in the efficiency of the propulsion system and allow advanced strategies to reduce pollutant and noise emissions. The paper presents the results of a simulation study that addresses the minimization of fuel consumption, NOx emissions and combustion noise of a medium-size passenger car. Such a vehicle has a parallel-hybrid diesel powertrain with a high-voltage belt alternator starter. The simulation reproduces real-driver behavior through a dynamic modeling approach and actuates an automatic power split between the Internal Combustion Engine (ICE) and the Electric Machine (EM). Typical characteristics of parallel hybrid technologies, such as Stop&Start, regenerative braking and electric power assistance, are implemented via an operating strategy that is based on the reduction of total losses.
Technical Paper

Analytical Evaluation of Propulsion System Architectures for Future Urban Vehicles

2011-04-12
2011-01-0861
Today, nearly half of the world population lives in urban areas. As the world population continues to migrate to urban areas for increased economic opportunities, addressing personal mobility challenges such as air pollution, Greenhouse Gases (GHGs) and traffic congestion in these regions will become even a greater challenge especially in rapidly growing nations. Road transportation is a major source of air pollution in urban areas causing numerous health concerns. Improvements in automobile technology over the past several decades have resulted in reducing conventional vehicle tailpipe emissions to exceptionally low levels. This transformation has been attained mainly through advancements in engine and transmission technologies and through partial electrification of vehicles. However, the technological advancements made so far alone will not be able to mitigate the issues due to increasing GHGs and air pollution in urban areas.
Technical Paper

Application of the Design of Experiments to Study the Sensitivity and Contribution of a Seat Back Bladder Bolster on Occupant Lateral Support Performance

2024-01-16
2024-26-0303
Automotive seat comfort systems provide occupants with a choice to adjust the seat to individual preference, enhancing the customized comfort feel. Seat comfort systems such as massager, lumbar support bladders, seat cushion bolster bladders and seat back bolster bladders are increasingly adopted in automotive seats as customer demand for customizable seats is on the rise. Development of seat comfort systems is mainly driven by Tier 1 suppliers to an automotive original equipment manufacturer (OEM). The Automotive OEM must wait until the final seat prototype is ready with all the seat comfort systems packaged to evaluate the seat comfort performance. Computer Aided Engineering (CAE) Tools like CASIMIR provide detail dummies representing humans with tissues and muscles, allowing occupant seat comfort to be predicted virtually.
Journal Article

Boundary Condition Effect on the Correlation of an Acoustic Finite Element Passenger Compartment Model

2011-04-12
2011-01-0506
Three different acoustic finite element models of an automobile passenger compartment are developed and experimentally assessed. The three different models are a traditional model, an improved model, and an optimized model. The traditional model represents the passenger and trunk compartment cavities and the coupling between them through the rear seat cavity. The improved model includes traditional acoustic models of the passenger and trunk compartments, as well as equivalent-acoustic finite element models of the front and rear seats, parcel shelf, door volumes, instrument panel, and trunk wheel well volume. An optimized version of the improved acoustic model is developed by modifying the equivalent-acoustic properties. Modal analysis tests of a vehicle were conducted using loudspeaker excitation to identify the compartment cavity modes and sound pressure response to 500 Hz to assess the accuracy of the acoustic models.
Technical Paper

Conditional Analysis of Enhanced Combustion Luminosity Imaging in a Spray-Guided Gasoline Engine with High Residual Fraction

2011-04-12
2011-01-1281
High-speed (12 kHz) imaging of combustion luminosity (enhanced by using a sodium fuel additive) has been analyzed and compared to crank angle resolved heat release rates and mass fraction burn profiles in a spray-guided spark-ignited direct-injection (SG-SIDI) optical single-cylinder engine. The addition of a sodium-containing additive to gasoline greatly increases the combustion luminosity, which allows unintensified high-speed (12 kHz) imaging of early partially premixed flame kernel growth and overall flame propagation with excellent signal-to-noise ratio for hundreds of consecutive engine cycles. Ignition and early flame kernel growth are known to be key to understanding and eliminating poor burn cycles in SG-SIDI engines.
Technical Paper

Consumer Sensitivity to Vehicle Interior Component Adjustments

2012-04-16
2012-01-0075
The number of adjustable vehicle interior components features is growing. For example, the number of adjustable components of a vehicle seat has been growing from 4-way to as many as 22-way. The presented study aims to develop understanding on how sensitive drivers and front passengers are to individual component adjustment of vehicle interior features. This understanding could provide insights on which adjustable vehicle interior components features are more important to be precisely adjusted. A commercially available full-size sedan, equipped with a 4-way adjustable steering column & wheel and an 8-way adjustable seat for drivers, and an 8-way adjustable seat for front passengers, was used in this study. A total of 29 and 30 consumers were participating in this study to adjust components to their comfort on driver and front passenger sides, respectively.
Technical Paper

Correlating Measured Combustion Performance with CFD Predicted In-Cylinder Flows for a Spark-Ignition Direct-Injection (SIDI) Engine with Enhanced Charge Motion

2013-04-08
2013-01-1090
A numerical and corresponding experimental study was undertaken to identify the ability to accurately predict combustion performance using our 3-D numerical tools for a direct-injection homogeneous-charge engine. To achieve a significant range of combustion rates, the evaluation was conducted for the engine operating with and without enhanced charge motion. Five charge motion configurations were examined, each having different levels of swirl and tumble flow leading to different turbulence generation and decay characteristics. A detailed CFD analysis provides insight into the in-cylinder flow requirements as well as the accuracy of the submodels. The in-cylinder air-fuel distribution, the mass-averaged swirl and tumble levels along with mean flow and turbulent kinetic energies are calculated throughout the induction and compression processes.
Technical Paper

Design, Analysis, and Development Testing of Large Hood Plastic Mounted Trim Components

2011-04-12
2011-01-0490
Large hood mounted plastic trim components are subjected to complex and often extreme loading conditions. Typical loading conditions include solar and thermal cycling, as well as road and powertrain induced vibrations, aero lift and buffeting, and mechanical loads such as car wash. For the above components understanding and classifying the typical loading conditions is an essential and important step in achieving long term quality. This paper discusses different approaches to the design, analysis, development, and testing of plastic trim components. Samples of analysis and test results are presented to demonstrate how to identify and prevent the loss of the part function. Some useful guidelines and practices for addressing thermal expansion, dimensional variation, and redundancy in attachments are also discussed.
Journal Article

Detailed Simulations of Stratified Ignition and Combustion Processes in a Spray-Guided Gasoline Engine using the SparkCIMM/G-Equation Modeling Framework

2012-04-16
2012-01-0132
Recently, high-speed optical imaging data for a single operating point of a spray-guided gasoline engine has, along with the flamelet model and the G-equation theory, enabled the development of the new spark-ignition model SparkCIMM. Within its framework, detailed chemistry flamelet models capture the experimental feature of multiple localized ignition events along the excessively stretched and restriking spark channel, as well as the observations of non-spherical highly corrugated early turbulent flame fronts. The developed flamelet models account for the substantial turbulent fluctuations in equivalence ratio and enthalpy present under spray-guided conditions. A non-unity Lewis number formulation captures the deficient species diffusion into the highly curved flame reaction zone.
Technical Paper

Detection of Urea Injection System Faults for SCR Systems

2012-04-16
2012-01-0431
The urea injection is a key function in Urea-SCR NOx reduction system. As the tailpipe NOx emission standard becomes increasingly stringent, it is critical to diagnose the injection faults in order to guarantee the SCR DeNox functionality and performance. Particularly, a blocked injector may cause under-dosing of urea thus reduced DeNox functionality. Monitoring urea injection rate is one of the efficient methods for injection fault diagnosis. However, direct measurement of the urea mass flow is not feasible due to its high cost. This paper presents methods that are promising for detecting and isolating faults in urea injection by processing certain actuator signal and existing sensory measurements, e.g., the injector Pulse Amplitude Modulated (PAM) command and the pressure of the urea delivery line. No additional dedicated sensor is required. Three methods are discussed to detect urea injection system faults.
Journal Article

Development of General Motors' eAssist Powertrain

2012-04-16
2012-01-1039
General Motors' (GM) eAssist powertrain builds upon the knowledge and experience gained from GM's first generation 36Volt Belt-Alternator-Starter (BAS) system introduced on the Saturn VUE Green Line in 2006. Extensive architectural trade studies were conducted to define the eAssist system. The resulting architecture delivers approximately three times the peak electric boost and regenerative braking capability of 36V BAS. Key elements include a water-cooled induction motor/generator (MG), an accessory drive with a coupled dual tensioner system, air cooled power electronics integrated with a 115V lithium-ion battery pack, a direct-injection 2.4 liter 4-cylinder gasoline engine, and a modified 6-speed automatic transmission. The torque-based control system of the eAssist powertrain was designed to be fully integrated with GM's corporate common electrical and controls architectures, enabling the potential for broad application across GM's global product portfolio.
Journal Article

Development of Liftgate Hinge-to-Roof Sealing Gasket Material for Uncoated Steel Roof Panels

2011-04-12
2011-01-0072
The sealing of a lift gate hinge to the body structure is necessary to avoid both the onset of corrosion and to avoid water intrusion into the interior compartment. The hinge-to-body interface typically involves horizontal metal-to-metal surface contact, creating the perfect environment for moisture entrapment and corrosion initiation. The choice of body panel material (uncoated (bare) steel vs. coated (galvanized) steel) drives different sealing approaches especially when considering corrosion avoidance.
Technical Paper

Door Check Load Durability - Fatigue Life Prediction

2011-04-12
2011-01-0790
This paper describes an analytical methodology for predicting the fatigue life of a door system for check load durability cycles. A check stop load durability cycle occurs when a customer opens the door beyond the door detent position with a force applied on the check link or hinge check stops. This method combines Finite Element Analysis (FEA) model and fatigue code to compute the durability requirements. The FEA model consists of Door-in-White (DIW) on body with integrated hinge check link or independent check link. Nonlinear material, geometric and parts contact were considered for the door with body-in-white (BIW). Several door hinge designs, with integrated and independent check links, were investigated. Using the Von Mises stress and plastic strain from the above analysis, the fatigue life was predicted and compared with the test data. Integrating FEA and fatigue allows predicting the threshold total strain value, which is developed, for check load durability requirements.
Technical Paper

Dual Rate Jounce Bumper Design

2011-04-12
2011-01-0791
Jounce bumpers are the primary component by which vertical wheel travel is limited in our suspensions. Typically, the jounce bumper is composed of closed or open cell urethane material, which has relatively low stiffness at initial compression with highly progressive stiffness at full compression. Due to this highly progressive stiffness at high load, peak loads are extremely sensitive to changes in input energy (affected by road surface, tire size, tire pressure, etc.) A “Dual Rate Jounce Bumper” concept is described that reduces this sensitivity. Additionally, various mechanizations of the concept are described as well as the specific program benefits, where applicable.
Technical Paper

Effect of DPF Design Parameters on Fuel Economy and Thermal Durability

2012-04-16
2012-01-0847
Diesel particle filters (DPF) have become the standard and essential aftertreatment components for all on-road diesel engines used in the US and Europe. The OBD requirements for DPF are becoming rigorously strict starting from 2015 model year. The pressure sensor or other strategies currently used for DPF diagnostics will most likely become insufficient to meet the new OBD requirements and a post DPF soot sensor might be necessary. This means that it will be even more imperative to develop a DPF design that would not have any soot leaks in its emission lifetime, otherwise the DPF will become a high warranty item.
X