Refine Your Search

Topic

Author

Search Results

Technical Paper

A Statistical Approach for Correlation/Validation of Hot-Soak Terminal Temperature of a Vehicle Cabin CFD Model

2013-04-08
2013-01-0854
A Design for Six Sigma (DFSS) statistical approach is presented in this report to correlate a CFD cabin model with test results. The target is the volume-averaged hot-soak terminal temperature. The objective is to develop an effective correlation process for a simplified CFD cabin model so it can be used in practical design process. It is, however, not the objective in this report to develop the most accurate CFD cabin model that would be too expensive computationally at present to be used in routine design analysis. A 3-D CFD model of a vehicle cabin is the central part of the computer modeling in the development of automotive HVAC systems. Hot-soak terminal temperature is a thermal phenomenon in the cabin of a parked vehicle under the Sun when the overall heat transfer reaches equilibrium. It is often part of the simulation of HVAC system operation.
Technical Paper

Accelerated Life Test Methodology for Li-Ion Batteries in Automotive Applications

2013-04-08
2013-01-1548
Determining Li-ion battery life through life modeling is an excellent tool in determining and estimating end-of-life performance. Achieving End-of-Life (EOL) can be challenging since it is difficult to achieve both cycle and calendar life during the same test without years of testing. The plan to correlate testing with the model included three (3) distinct temperature ranges, beginning with the four-Season temperature profile, an aggressive profile with temperatures in the 50 to 55°C range, and using a mid-temperature range (40-45°C) as a final comparison test. A high duty-cycle drive profile was used to cycle all of the batteries as quickly as possible to reach the one potential definition of EOL; significant increases in resistance or capacity fade.
Technical Paper

An Analysis for Floating Bearings in a Turbocharger

2011-04-12
2011-01-0375
A comprehensive analysis has been performed for floating bearings applied in a turbocharger. It is found that Couette power loss for a full-floating bearing (the floating ring rotates) decreases with increasing inner and outer clearances, while its Poiseuille power loss increases with increasing inner and outer film clearances. In comparison with a semi-floating bearing (the floating ring does not rotate), a full-floating bearing can reduce both Couette and Poiseuille power losses. However, floating bearing is found to have a smaller minimum film thickness for a given dynamic loading from rotor-dynamics. The total power loss reduction for typical full-floating bearings ranges from 13% to 27%, which matches well with some published experimental data. In general, the speed ratio increases with increasing outer film clearance, while it decreases with increasing inner film clearance because of shear stresses on the outer and inner film.
Journal Article

An Analysis of Floating Piston Pin

2011-04-12
2011-01-1407
Presented in the paper is a comprehensive analysis for floating piston pin. It is more challenging because it is a special type of journal bearing where the rotation of the journal is coupled with the friction between the journal and the bearing. In this analysis, the multi-degree freedom mass-conserving mixed-EHD equations are solved to determine the coupled pin rotation and friction. Other bearing characteristics, such as minimum film thickness, pin secondary motions in both connecting-rod small-end bearing and piston pin-boss bearing, power loss etc are also determined. The mechanism for floating pin to have better scuffing resistance is discovered. The theoretical and numerical model is implemented in the GM internal software FLARE (Friction and Lubrication Analysis for Reciprocating Engines).
Technical Paper

Application of Insulation Standards to High Voltage Automotive Applications

2013-04-08
2013-01-1528
Insulation coordination requirements for electrical equipment applications are defined in various standards. The standards are defined for application to stationary mains connected equipment, like IT, power supply or industrial equipment. Protection from an electric shock is considered the primary hazard in these standards. These standards have also been used in the design of various automotive components. IEC 60664-1 is an example of the standard. Automobiles are used across the world, in various environments and in varied usage by the customers. Automobiles need to consider possible additional hazards including electric shock. This paper will provide an overview of how to adapt these standards for automotive application in the design of High Voltage (HV) automotive components, including High Voltage batteries and other HV components connected to the battery. The basic definitions from the standards and the principles are applied for usage in automotive applications.
Journal Article

Application of System Safety Engineering Processes to Advanced Battery Safety

2011-04-12
2011-01-1369
The battery system in the Chevrolet Volt is very complex and must balance a variety of performance criteria, including the safety of vehicle occupants and other users. In order to assure a thorough approach to battery system safety, a system safety engineering process was applied and found to provide a useful framework. This methodical approach began with the preliminary hazard analysis and continued through requirements definition, design development and, finally, validation. Potentially hazardous conditions related directly to functional safety (for example, charge control) and primary physical safety (for example, short circuit conditions) can all be addressed in this manner. Typical battery abuse testing, as well as newly defined limit testing, supported the effort. Extensive documentation, traceability and peer reviews helped to verify that all issues were addressed.
Technical Paper

Application of the Homogeneous Relaxation Model to Simulating Cavitating Flow of a Diesel Fuel

2012-04-16
2012-01-1269
The internal flow in an injector is greatly affected by cavitation formation, and this in turn impacts the spray characteristics of diesel injectors. In the current work, the performance of the Homogeneous Relaxation Model (HRM) in simulating cavitation inside a diesel injector is evaluated. This model is based on the assumption of homogeneous flow, and was originally developed for flash boiling simulations. However, the model can potentially simulate the spectrum of vaporization mechanisms ranging from cavitation to flash boiling through the use of an empirical time scale which depends on the thermodynamic conditions of the injector fuel. A lower value of this time scale represents a lower deviation from thermal equilibrium conditions, which is an acceptable assumption for small-scale cavitating flows. Another important advantage is the ability of this model to be easily coupled with real fuel models.
Technical Paper

Approach to Validation Plan Development for Advanced Battery Systems in Vehicle Applications

2011-04-12
2011-01-1366
As advanced battery systems become a standard choice for mainstream production vehicle portfolios, comprehensive battery system validation plans are essential to ensure that the battery performance, reliability, and durability targets are met prior to vehicle integration. (Note: Safety and Abuse testing are outside of the scope of this paper.) The validation plan for the Chevrolet Volt Rechargeable_Energy Storage System (RESS), the first lithium-ion battery pack designed and manufactured by General Motors (GM), was developed using a functional silo approach based on the battery design requirements documentation. While the Chevrolet Volt was the lead program at General Motors to use this validation plan development approach, other GM programs with different battery system mounting locations and cooling techniques are now using this method.
Journal Article

Cabin Heating and Windshield Defrosting for Extended Range Electric, Pure Electric, & Plug-in Hybrid Vehicles

2012-04-16
2012-01-0121
Conventional HVAC systems adjust the position of a temperature door, to achieve a required air temperature discharged into the passenger compartment. Such systems are based upon the fact that a conventional (non-hybrid) vehicle's engine coolant temperature is controlled to a somewhat constant temperature, using an engine thermostat. Coolant flow rate through the cabin heater core varies as the engine speed changes. EREVs (Extended Range Electric Vehicles) & PHEVs (Plug-In Hybrid Electric Vehicles) have two key vehicle requirements: maximize EV (Electric Vehicle) range and maximize fuel economy when the engine is operating. In EV mode, there is no engine heat rejection and battery pack energy is consumed in order to provide heat to the passenger compartment, for windshield defrost/defog and occupant comfort. Energy consumption for cabin heating must be optimized, if one is to optimize vehicle EV range.
Technical Paper

Comprehensive Overview of Human Interface for an Extended Range Electric Vehicle

2011-04-12
2011-01-1023
An Extended Range Electric vehicle brings a wealth of new features since it is capable of driving on battery alone, has a range extending engine, and has a high voltage battery pack that can be recharged by plugging into wall power. The customer is able to interact with the vehicle's plug-in charging system through mobile applications. Along with all these new features is the challenge of designing a driver interface to provide important information to the customer. This paper will describe the unique customer interface features added to the vehicle, and will include some additional specifics related to the hardware used to provide the information.
Technical Paper

Conditional Analysis of Enhanced Combustion Luminosity Imaging in a Spray-Guided Gasoline Engine with High Residual Fraction

2011-04-12
2011-01-1281
High-speed (12 kHz) imaging of combustion luminosity (enhanced by using a sodium fuel additive) has been analyzed and compared to crank angle resolved heat release rates and mass fraction burn profiles in a spray-guided spark-ignited direct-injection (SG-SIDI) optical single-cylinder engine. The addition of a sodium-containing additive to gasoline greatly increases the combustion luminosity, which allows unintensified high-speed (12 kHz) imaging of early partially premixed flame kernel growth and overall flame propagation with excellent signal-to-noise ratio for hundreds of consecutive engine cycles. Ignition and early flame kernel growth are known to be key to understanding and eliminating poor burn cycles in SG-SIDI engines.
Technical Paper

Coolant Pipe Press Fit Study

2011-04-12
2011-01-0421
Coolant pipes are a prime connection units present in any engines that facilitates the flow of coolant and thereby keeping the engine under its optimum operating condition. Among the several influencing factors that deteriorate engines performance, the coolant leak is also one of the contributors. This could be caused primly due to leakage issues that arises from the pipe press fit zones. Henceforth it is very important to understand the root cause of this press-fit connection failure. The present study deals with press-fit between the pipe and housing in an engine which is subjected to extreme thermal loads (min of -40°C to a max temperature of +150°C) thereby causing the press-fit loosening effect.
Technical Paper

Crash Test Pulses for Advanced Batteries

2012-04-16
2012-01-0548
This paper reports a 2010 study undertaken to determine generic acceleration pulses for testing and evaluating advanced batteries for application in electric passenger vehicles. These were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used. The crash test data were gathered from the following test modes and sources: 1 Frontal rigid flat barrier test at 35 mph (NHTSA NCAP) 2 Frontal 40% offset deformable barrier test at 40 mph (IIHS) 3 Side moving deformable barrier test at 38 mph (NHTSA side NCAP) 4 Side oblique pole test at 20 mph (US FMVSS 214/NHTSA side NCAP) 5 Rear 70% offset moving deformable barrier impact at 50 mph (US FMVSS 301). The accelerometers used were from locations in the vehicle where deformation is minor or non-existent, so that the acceleration represents the “rigid-body” motion of the vehicle.
Technical Paper

Design Parameter Trade-off for Packaging of Stacked Prismatic Batteries

2011-04-12
2011-01-0667
Rechargeable energy storage systems with Lithium-ion pouch cells are subject to various ambient temperature conditions and go through thousands of charge-discharge cycles during the life time of operation. The cells may change their thickness with internal heat generation, cycling and any other mechanisms. The stacked prismatic cells thus experience face pressure and this could impact the pack electrical performance. The pack consists of stiff end plates keeping the pack in tact using bolts, cooling fins to maintain cell temperature and foam padding in between cells. The pack level thermal requirements limit the amount of temperature increase during normal operating conditions. Similarly, the structural requirements state that the stresses and the deflection in the end plates should be minimal. Uncertainties in cell, foam mechanical and thermal properties might add variation to the pack performance.
Journal Article

Design of Engine-Out Virtual NOx Sensor Using Neural Networks and Dynamic System Identification

2011-04-12
2011-01-0694
Fuel economy improvement and stringent emission regulations worldwide require advanced air charging and combustion technologies, such as low temperature combustion, PCCI or HCCI combustion. Furthermore, NOx aftertreatment systems, like Selective Catalyst Reduction (SCR) or lean NOx trap (LNT), are needed to reduce vehicle tailpipe emissions. The information on engine-out NOx emissions is essential for engine combustion optimization, for engine and aftertreatment system development, especially for those involving combustion optimization, system integration, control strategies, and for on-board diagnosis (OBD). A physical NOx sensor involves additional cost and requires on-board diagnostic algorithms to monitor the performance of the NOx sensor.
Journal Article

Detailed Simulations of Stratified Ignition and Combustion Processes in a Spray-Guided Gasoline Engine using the SparkCIMM/G-Equation Modeling Framework

2012-04-16
2012-01-0132
Recently, high-speed optical imaging data for a single operating point of a spray-guided gasoline engine has, along with the flamelet model and the G-equation theory, enabled the development of the new spark-ignition model SparkCIMM. Within its framework, detailed chemistry flamelet models capture the experimental feature of multiple localized ignition events along the excessively stretched and restriking spark channel, as well as the observations of non-spherical highly corrugated early turbulent flame fronts. The developed flamelet models account for the substantial turbulent fluctuations in equivalence ratio and enthalpy present under spray-guided conditions. A non-unity Lewis number formulation captures the deficient species diffusion into the highly curved flame reaction zone.
Journal Article

Determination of Used Crankcase Oil Condition by Capillary Electrophoresis Analysis of Extracted Organic Acids

2009-11-02
2009-01-2689
Organic acid degradation products and other anions in engine oil were speciated by capillary electrophoresis (CE) and liquid chromatography-mass spectrometry (LCMS) with electrospray ionization. The sample preparation procedure involved selectively extracting the acids and other water soluble salts into 0.05M aqueous potassium hydroxide. Samples of engine-aged mineral oil and synthetic engine oil contained formic acid, acetic acid, and complex mixtures of fatty acid degradation products. CE analysis of formic acid, acetic acid and selected fatty acids is proposed as a new chemical analysis method for evaluating the condition of engine oil and for studying the effects of high temperature-high load (HTHL) oxidation. Because the overall pattern of CE peaks in the electropherogram changes with oil age or condition, CE-fingerprint (i.e., pattern recognition) techniques may also be useful for evaluating an aged oil's condition or remaining service life.
Technical Paper

Determining Most Energy Efficient Cooling Control Strategy of a Rechargeable Energy Storage System

2011-04-12
2011-01-0893
Plug in hybrid electric vehicles (PHEV) and electric vehicles (EV) are using large lithium ion battery packs to store energy for powering electric traction motors. These batteries, or Rechargeable Energy Storage Systems (RESS), have a narrow temperature operating range and require thermal management systems to properly condition the batteries for use in automotive applications. This paper will focus on energy optimization of a RESS cooling system. The battery thermal management system for the General Motors Chevrolet Volt has three distinct modes for battery cooling: active cooling, passive cooling, and bypass. Testing was conducted on each individual thermal cooling mode to optimize, through control models, the energy efficiency of the system with the goal of maximizing electric vehicle range.
Journal Article

Development of General Motors' eAssist Powertrain

2012-04-16
2012-01-1039
General Motors' (GM) eAssist powertrain builds upon the knowledge and experience gained from GM's first generation 36Volt Belt-Alternator-Starter (BAS) system introduced on the Saturn VUE Green Line in 2006. Extensive architectural trade studies were conducted to define the eAssist system. The resulting architecture delivers approximately three times the peak electric boost and regenerative braking capability of 36V BAS. Key elements include a water-cooled induction motor/generator (MG), an accessory drive with a coupled dual tensioner system, air cooled power electronics integrated with a 115V lithium-ion battery pack, a direct-injection 2.4 liter 4-cylinder gasoline engine, and a modified 6-speed automatic transmission. The torque-based control system of the eAssist powertrain was designed to be fully integrated with GM's corporate common electrical and controls architectures, enabling the potential for broad application across GM's global product portfolio.
Journal Article

Development of Two-Mode Hybrid Powertrain with Enhanced EV Capability

2011-04-12
2011-01-0883
The two-mode hybrid system has several advantages over a one-mode EVT system: greater ability to transmit power mechanically and minimize electrical recirculation power, maximize fuel economy improvement and best meet demanding vehicle requirements. Extending the two-mode hybrid electric vehicle (HEV) to two-mode plug-in hybrid electric vehicle (PHEV) is significant not only to make the internal combustion engine (ICE)-based vehicle cleaner and more efficient in the near term, but also to provide a potential path to battery electric vehicles in the future. For PHEV, the enhanced electric drive capability is of vital importance to achieve best efficiency and best electric only performance. This paper describes the development of a prototype two-mode hybrid powertrain with enhanced EV capability (2MH4EV). The prototype drive unit includes an additional input brake to the existing General Motors FWD 2-mode HEV system.
X