Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison New Car Assessment Program NCAP Requirements and Procedures Around the World

2013-10-07
2013-36-0499
The New Car Assessment Program (NCAP), introduced in 1979 by the U.S. National Highway Traffic Safety Administration, is a vehicle safety rating system that conducts crash test and provides motoring consumers with an assessment of the safety performance of new cars. Similar programs were then developed around the world, initially for Europe (EuroNCAP), Australia (ANCAP), Japan (JNCAP), China (CNCAP) and Korea (KNCAP). NCAP most recently reached Latin America (LatinNCAP) and Southeast Asia (AseanNCAP). Although the roots are similar, many NCAP programs have significant differences on the test procedures and rating schemes. This paper is a comparative analysis of the recent NCAP protocols to highlight the most important technical differences.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Technical Paper

A Constant Radius Constant Speed Simulation Methodology-Yaw Rate Control

2011-04-12
2011-01-0738
A simulation methodology is developed for the Constant Radius Constant Speed (CRCS) analysis to predict the ISO4138 [1] road test performance. The CRCS analysis can be used to predict the vehicle steady-state handling characteristics such as understeer, rear cornering compliance, and roll gradient, etc. The Yaw-Rate Control methodology is applied to replace the traditional driver-in-the-loop path-following approaches. Comparing to the path-following approaches, the proposed method is simpler to use, more efficient, accurate, and robust.
Technical Paper

A Study of Crash Rates for Vehicles with Advanced Crash Avoidance Features

2011-04-12
2011-01-0587
This paper describes how information available through the OnStar system represents a unique and powerful mechanism to assess field crash rates. Included within is a description of how vehicle and OnStar information may be gathered, organized and analyzed. The resulting data provides the capability to conducts various studies of field activity and/or events. In this case, a study was conducted to try to determine if certain vehicle equipment might have an impact on field crash rates. The process is exemplified via a description of a study conducted by GM OnStar in 2009. Two analyses were conducted comparing crash rates of selected vehicle models, with and without certain advanced safety sensing and warning features. Specifically, beginning in the 2008 Model Year, General Motors introduced Lane Departure Warning and Side Blind Zone Alert into US/Canada production. Utilizing data on crashes, drawn from OnStar Automatic Crash Response events, analyses of crash rates were conducted.
Technical Paper

A Study of Hybrid III 5th Percentile Female ATD Chest Accelerometers to Assess Sternum Compression Rate in Chest on Module Driver Out-of-Position Evaluations

2017-03-28
2017-01-1431
Driver out-of-position (OOP) tests were developed to evaluate the risk of inflation induced injury when the occupant is close to the airbag module during deployment. The Hybrid III 5th percentile female Anthropomorphic Test Device (ATD) measures both sternum displacement and chest acceleration through a potentiometer and accelerometers, which can be used to calculate sternum compression rate. This paper documents a study evaluating the chest accelerometers to assess punch-out loading of the chest during this test configuration. The study included ATD mechanical loading and instrumentation review. Finite element analysis was conducted using a Hybrid III - 5th percentile female ATD correlated to testing. The correlated restraint model was utilized with a Hybrid III - 50th percentile male ATD. A 50th percentile male Global Human Body Model (HBM) was then applied for enhanced anatomical review.
Technical Paper

Adjoint Method for Aerodynamic Shape Improvement

2012-04-16
2012-01-0167
The main objective of this work is to demonstrate the merits of the Adjoint method to provide comprehensive information for shape sensitivities and design directions to achieve low drag vehicle shapes. The adjoint method is applied to a simple 2D airfoil and a 3D vehicle shape. The discrete Adjoint equations in the flow solvers are used to investigate further potential shape improvements of the low drag vehicle shapes. The low drag vehicle used in this study was designed earlier using the conventional approach (i.e., extensive use of wind tunnel testing). The goal is to use the already low drag vehicle shape and reduce its drag even further using the adjoint methodology without using the time-consuming and the high cost of wind tunnel testing. In addition, the present study is intended to compare the results with the other computational techniques such as surface pressure gradients method.
Technical Paper

Advanced Field Study of Rollover Sensor Equipped Vehicles

2011-04-12
2011-01-1113
General Motors (GM), OnStar and the University of Michigan International Center for Automotive Medicine (ICAM) have formed a partnership to investigate and analyze real world rollover crashes involving GM vehicles equipped with rollover sensing technology and rollover-capable roof rail airbag systems. Candidates for the study are initially identified by OnStar, who receive notification of a rollover crash through the vehicle's Automatic Crash Response system. If the customer agrees to participate in the study, medical, vehicle and crash scene information are quickly gathered. This information is then reviewed by the medical and GM engineering communities to provide field relevant learning on injury mechanisms and vehicle system performance in rollover events. This paper provides a detailed review of the field case studies collected to date.
Journal Article

Aerodynamic Development of the 2011 Chevrolet Volt

2011-04-12
2011-01-0168
This paper presents some of the challenges and successful outcomes in developing the aerodynamic characteristics of the Chevrolet Volt, an electric vehicle with an extended-range capability. While the Volt's propulsion system doesn't directly affect its shape efficiency, it does make aerodynamics much more important than in traditional vehicles. Aerodynamic performance is the second largest contributor to electric range, behind vehicle mass. Therefore, it was critical to reduce aerodynamic drag as much as possible while maintaining the key styling cues from the original concept car. This presented a number of challenges during the development, such as evaluating drag due to underbody features, balancing aerodynamics with wind noise and cooling flow, and interfacing with other engineering requirements. These issues were resolved by spending hundreds of hours in the wind tunnel and running numerous Computational Fluid Dynamics (CFD) analyses.
Technical Paper

An Integrated Approach to Requirements Development and Hazard Analysis

2015-04-14
2015-01-0274
The introduction of new safety critical features using software-intensive systems presents a growing challenge to hazard analysis and requirements development. These systems are rich in feature content and can interact with other vehicle systems in complex ways, making the early development of proper requirements critical. Catching potential problems as early as possible is essential because the cost increases exponentially the longer problems remain undetected. However, in practice these problems are often subtle and can remain undetected until integration, testing, production, or even later, when the cost of fixing them is the highest. In this paper, a new technique is demonstrated to perform a hazard analysis in parallel with system and requirements development. The proposed model-based technique begins during early development when design uncertainty is highest and is refined iteratively as development progresses to drive the requirements and necessary design features.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Journal Article

Analysis of Pre-Crash Data Transferred over the Serial Data Bus and Utilized by the SDM-DS Module

2011-04-12
2011-01-0809
The primary function of an airbag control module is to detect crashes, discriminate and predict if a deployment is necessary, then deploy the restraint systems including airbags and where applicable, pretensioners. At General Motors (GM), the internal term for airbag control module is Sensing and Diagnostic Module (SDM). In the 1994 model year, GM introduced its SDM on some of its North American airbag-equipped vehicles. A secondary function of that SDM and all subsequent SDMs is to record crash related data. This data can include data regarding impact severity from internal accelerometers and pre-crash vehicle data from various chassis and powertrain modules. Previous researchers have addressed the accuracy of both the velocity change data, recorded by the SDM, and the pre-crash data, but the assessment of the timing of the pre-crash data has been limited to a single family of modules (Delphi SDM-G).
Technical Paper

Application of Insulation Standards to High Voltage Automotive Applications

2013-04-08
2013-01-1528
Insulation coordination requirements for electrical equipment applications are defined in various standards. The standards are defined for application to stationary mains connected equipment, like IT, power supply or industrial equipment. Protection from an electric shock is considered the primary hazard in these standards. These standards have also been used in the design of various automotive components. IEC 60664-1 is an example of the standard. Automobiles are used across the world, in various environments and in varied usage by the customers. Automobiles need to consider possible additional hazards including electric shock. This paper will provide an overview of how to adapt these standards for automotive application in the design of High Voltage (HV) automotive components, including High Voltage batteries and other HV components connected to the battery. The basic definitions from the standards and the principles are applied for usage in automotive applications.
Technical Paper

Approach to Validation Plan Development for Advanced Battery Systems in Vehicle Applications

2011-04-12
2011-01-1366
As advanced battery systems become a standard choice for mainstream production vehicle portfolios, comprehensive battery system validation plans are essential to ensure that the battery performance, reliability, and durability targets are met prior to vehicle integration. (Note: Safety and Abuse testing are outside of the scope of this paper.) The validation plan for the Chevrolet Volt Rechargeable_Energy Storage System (RESS), the first lithium-ion battery pack designed and manufactured by General Motors (GM), was developed using a functional silo approach based on the battery design requirements documentation. While the Chevrolet Volt was the lead program at General Motors to use this validation plan development approach, other GM programs with different battery system mounting locations and cooling techniques are now using this method.
Technical Paper

Automotive AC System Oil Migration HFO-1234yf Vs. R134a

2011-04-12
2011-01-1173
1 As global automotive manufacturers prepare for the introduction of HFO-1234yf as the low Global Warming Potential (GWP) refrigerant solution in Europe and North America concerns over compressor durability due to oil migration still remain. This preliminary study evaluates several different variables that affect oil migration. Several compressor suppliers each having their own unique oil formulation for HFO-1234yf were included. Comparisons between vehicle tests and various accelerated lab test methods are made. In R134a automotive system the thresholds that cause compressor warranty are well understood. This study will compare AC systems running with HFO-1234yf at the same time identical systems with R134a are run to understand the relative effect of HFO-1234yf versus R134a.
Journal Article

Challenges for Tire Noise Evaluation on Common Pavements

2011-05-17
2011-01-1582
Developing common methods of noise evaluation and facilities can present a number of challenges in the area of tire/pavement noise. Some of the issues involved include the design and construction of pavements globally, the change in pavement over time, and variation in the noise produced with standard test tires used as references. To help understand and address these issues for airborne tire/pavement noise, acoustic intensity measurement methods based on the On-board Sound Intensity (OBSI) technique have been used. Initial evaluations have included measurements conducted at several different proving grounds. Also included were measurements taken on a 3m diameter tire noise dynamometer with surfaces replicating test track pavements. Variation between facilities appears to be a function of both design/construction and pavement age. Consistent with trends in the literature, for smooth asphalt surfaces, the newest surface produced levels lower than older surfaces.
Journal Article

Challenges in Real Time Controls Simulation (Hardware-In-the-Loop) in Active Safety for Subsystem Level Software Verification

2011-04-12
2011-01-0450
As the new features for driver assistance and active safety systems are growing rapidly in vehicles, the simulation within a virtual environment has become a necessity. The current active safety system consists of Electronic Control Units (ECUs) which are coupled to camera and radar sensors. Two methods of implementation exists, integrated sensors with control modules or separation of sensors form control modules. The subsystem integration testing poses new challenges for virtual environment for simulation of active safety features. The comprehensive simulation environment for integration testing consists of chassis controls, powertrain, driver assistance, body and displays controllers. Additional complexity in the system is the serial communication strategy. Multiple communication protocols such as GMLAN, LIN, standard CAN, and Flexray could be present within the same vehicle topology.
Technical Paper

Comparisons of Current Concepts for Press Hardened Steel Tailor Welded Blanks and Tailor Rolled Blanks on Center Pillar Reinforcements

2011-04-12
2011-01-1059
Press hardened steels (PHS) are commonly used in automotive structural applications because of their combination of extremely high strength, load carrying capacity and the ability to form complex shapes in the press hardening process. Recent adoption of increased roof crush standards, side impact requirements and the increased focus on CO2 emissions and mass reduction have led autmotive manufacturers to significantly increase the amount of PHS being designed into future vehicle designs. As a way to further optimize the use of these steels, multi-gauge welded blanks of PHS and multi-material blanks of PHS to microalloyed steels of various thickness have been developed to help achieve these requirements. More recently, tailor rolled PHS, whereby the steel is rolled such that the thickness changes across the width of the sheet, have been developed.
Technical Paper

Conditional Analysis of Enhanced Combustion Luminosity Imaging in a Spray-Guided Gasoline Engine with High Residual Fraction

2011-04-12
2011-01-1281
High-speed (12 kHz) imaging of combustion luminosity (enhanced by using a sodium fuel additive) has been analyzed and compared to crank angle resolved heat release rates and mass fraction burn profiles in a spray-guided spark-ignited direct-injection (SG-SIDI) optical single-cylinder engine. The addition of a sodium-containing additive to gasoline greatly increases the combustion luminosity, which allows unintensified high-speed (12 kHz) imaging of early partially premixed flame kernel growth and overall flame propagation with excellent signal-to-noise ratio for hundreds of consecutive engine cycles. Ignition and early flame kernel growth are known to be key to understanding and eliminating poor burn cycles in SG-SIDI engines.
Technical Paper

Correlating Measured Combustion Performance with CFD Predicted In-Cylinder Flows for a Spark-Ignition Direct-Injection (SIDI) Engine with Enhanced Charge Motion

2013-04-08
2013-01-1090
A numerical and corresponding experimental study was undertaken to identify the ability to accurately predict combustion performance using our 3-D numerical tools for a direct-injection homogeneous-charge engine. To achieve a significant range of combustion rates, the evaluation was conducted for the engine operating with and without enhanced charge motion. Five charge motion configurations were examined, each having different levels of swirl and tumble flow leading to different turbulence generation and decay characteristics. A detailed CFD analysis provides insight into the in-cylinder flow requirements as well as the accuracy of the submodels. The in-cylinder air-fuel distribution, the mass-averaged swirl and tumble levels along with mean flow and turbulent kinetic energies are calculated throughout the induction and compression processes.
Technical Paper

Crash Test Pulses for Advanced Batteries

2012-04-16
2012-01-0548
This paper reports a 2010 study undertaken to determine generic acceleration pulses for testing and evaluating advanced batteries for application in electric passenger vehicles. These were based on characterizing vehicle acceleration time histories from standard laboratory vehicle crash tests. Crash tested passenger vehicles in the United States vehicle fleet of the model years 2005-2009 were used. The crash test data were gathered from the following test modes and sources: 1 Frontal rigid flat barrier test at 35 mph (NHTSA NCAP) 2 Frontal 40% offset deformable barrier test at 40 mph (IIHS) 3 Side moving deformable barrier test at 38 mph (NHTSA side NCAP) 4 Side oblique pole test at 20 mph (US FMVSS 214/NHTSA side NCAP) 5 Rear 70% offset moving deformable barrier impact at 50 mph (US FMVSS 301). The accelerometers used were from locations in the vehicle where deformation is minor or non-existent, so that the acceleration represents the “rigid-body” motion of the vehicle.
X