Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Comparison of Private Garage and Centralized I&M Programs

1979-02-01
790785
A fundamental decision to be made in developing a motor vehicle Inspection and Maintenance (I&M) program is whether a “centralized” or “private garage” program will be used. Under the centralized approach, the state or a state contractor operates a network of single purpose “Inspection Centers” to inspect motor vehicles before the completion of the annual registration renewal process. After any repairs necessary to correct vehicles with excessive emissions are made at a facility of the owner's choosing, the vehicle must pass a reinspection at the Inspection Center. Under the private garage (decentralized) approach, both inspections and repairs are conducted by private repair facilities licensed by the state. A comparison of a centralized I&M program and a private garage I&M program currently operating in California indicates that the centralized program is providing over ten times greater emissions reductions.
Journal Article

A Comparison of Spray-Guided Stratified-Charge Combustion Performance with Outwardly-Opening Piezo and Multi-Hole Solenoid Injectors

2011-04-12
2011-01-1217
This investigation was aimed at measuring the relative performance of two spray-guided, single-cylinder, spark-ignited direct-injected (SIDI) engine combustion system designs. The first utilizes an outwardly-opening poppet, piezo-actuated injector, and the second a conventional, solenoid operated, inwardly-opening multi-hole injector. The single-cylinder engine tests were limited to steady state, warmed-up conditions. The comparison showed that these two spray-guided combustion systems with two very different sprays had surprisingly close results and only differed in some details. Combustion stability and smoke emissions of the systems are comparable to each other over most of the load range. Over a simulated Federal Test Procedure (FTP) cycle, the multi-hole system had 15% lower hydrocarbon and 18% lower carbon monoxide emissions.
Technical Paper

A Study of the Relative Benefits of On-Board Diagnostics and Inspection and Maintenance in California

1995-08-01
951944
California is considering adopting an enhanced Inspection and Maintenance (I&M) program (commonly referred to as Smog Check II) beginning with the 1996 calendar year. This program will utilize a targeting scheme to identify vehicles likely to be high emitters and send these vehicles to centralized testing facilities. The remaining fleet of vehicles will be sent to decentralized testing facilities. At these facilities, vehicles will be subjected to steady state loaded mode dynamometer based tests. Simultaneously, all 1996 and later model year passenger cars, light- and medium-duty trucks sold in California will be equipped with an On-Board Diagnostic (OBDII) system. This system is designed to monitor critical emission related components and activate a Malfunction Indicator Light (MIL) when a failure or a drift in calibration is likely to cause emissions to exceed 1.5 times the vehicle certification standards.
Journal Article

Achieving an 80% GHG Reduction by 2050 in California's Passenger Vehicle Fleet: Implications for the ZEV Regulation

2010-10-19
2010-01-2306
In recognizing the potential for large, damaging impacts from climate change, California enacted Executive Order S-03-05, requiring a reduction in statewide greenhouse gas (GHG) emissions to 80% below 1990 levels by 2050. Given that the transportation light-duty vehicle (LDV) segment accounts for 28% of the state's GHG emissions today, it will be difficult to meet the 2050 goal unless a portfolio of near-zero carbon transportation solutions is pursued. Because it takes decades for a new propulsion system to capture a large fraction of the passenger vehicle market due to vehicle fleet turn-over rates, it is important to accelerate the introduction of these alternatives to ensure markets enter into early commercial volumes (10,000s) between 2015 and 2020. This report summarizes the results and conclusions of a modeling exercise that simulated GHG emissions from the LDV sector to 2050 in California.
Technical Paper

Ambient Emission Measurements from Parked Regenerations of 2007 and 2010 Diesel Particulate Filters

2014-09-30
2014-01-2353
A novel ambient dilution tunnel has been designed, tested and employed to measure the emissions from active parked regenerations of Diesel Particulate Filters (DPFs) for 2007 and 2010 certified heavy duty diesel trucks (HDDTs). The 2007 certified engine had greater regulated emissions than the 2010 certified engine. For a fully loaded 2007 DPF there was an initial period of very large mass emissions, which was then followed by very large number of small particle emissions. The Particle Size Distribution, PSD, was distributed over a large range from 10 nm to 10 μm. The parked regenerations of the 2010 DPF had a much lower initial emission pattern, but the second phase of large numbers of small particles was very similar to the 2007 DPF. The emission results during regeneration have been compared to total emissions from recent engine dynamometer testing of 2007 and 2010 DPFs, and they are much larger.
Technical Paper

An Analysis for Floating Bearings in a Turbocharger

2011-04-12
2011-01-0375
A comprehensive analysis has been performed for floating bearings applied in a turbocharger. It is found that Couette power loss for a full-floating bearing (the floating ring rotates) decreases with increasing inner and outer clearances, while its Poiseuille power loss increases with increasing inner and outer film clearances. In comparison with a semi-floating bearing (the floating ring does not rotate), a full-floating bearing can reduce both Couette and Poiseuille power losses. However, floating bearing is found to have a smaller minimum film thickness for a given dynamic loading from rotor-dynamics. The total power loss reduction for typical full-floating bearings ranges from 13% to 27%, which matches well with some published experimental data. In general, the speed ratio increases with increasing outer film clearance, while it decreases with increasing inner film clearance because of shear stresses on the outer and inner film.
Journal Article

An Analysis of Floating Piston Pin

2011-04-12
2011-01-1407
Presented in the paper is a comprehensive analysis for floating piston pin. It is more challenging because it is a special type of journal bearing where the rotation of the journal is coupled with the friction between the journal and the bearing. In this analysis, the multi-degree freedom mass-conserving mixed-EHD equations are solved to determine the coupled pin rotation and friction. Other bearing characteristics, such as minimum film thickness, pin secondary motions in both connecting-rod small-end bearing and piston pin-boss bearing, power loss etc are also determined. The mechanism for floating pin to have better scuffing resistance is discovered. The theoretical and numerical model is implemented in the GM internal software FLARE (Friction and Lubrication Analysis for Reciprocating Engines).
Technical Paper

An Investigation of Diesel EGR Cooler Fouling and Effectiveness Recovery

2013-04-08
2013-01-0533
Diesel engine developers are continually striving to reduce harmful NOx emissions through various calibration and hardware strategies. One strategy being implemented in production Diesel engines involves utilizing cooled exhaust gas recirculation (EGR). Although there is a significant NOx reduction potential by utilizing cooled EGR, there are also several issues associated with it, such as EGR cooler fouling and a reduction in cooler effectiveness that can occur over time. The exact cause of these issues and many others related to cooler fouling are not clearly understood. One such unanswered issue or phenomenon that has been observed in both field tested and lab tested EGR coolers is that of a recovery in EGR cooler effectiveness after a shutdown or after cycling between various conditions.
Technical Paper

Analysis of Diesel Injector Nozzle Flow Number Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2012-04-16
2012-01-0891
The present paper describes the results of a research project aimed at studying the impact of nozzle flow number on a Euro5 automotive diesel engine, featuring Closed-Loop Combustion Control. In order to optimize the trade-offs between fuel economy, combustion noise, emissions and power density for the next generation diesel engines, general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle hole size. In this context, three nozzle configurations have been characterized on a 2.0L Euro5 Common Rail Diesel engine, coupling experimental activities performed on multi-cylinder and optical single cylinder engines to analysis on spray bomb and injector test rigs. More in detail, this paper deeply describes the investigation carried out on the multi-cylinder engine, specifically devoted to the combustion evolution and engine performance analysis, varying the injector flow number.
Technical Paper

Analytical Evaluation of Propulsion System Architectures for Future Urban Vehicles

2011-04-12
2011-01-0861
Today, nearly half of the world population lives in urban areas. As the world population continues to migrate to urban areas for increased economic opportunities, addressing personal mobility challenges such as air pollution, Greenhouse Gases (GHGs) and traffic congestion in these regions will become even a greater challenge especially in rapidly growing nations. Road transportation is a major source of air pollution in urban areas causing numerous health concerns. Improvements in automobile technology over the past several decades have resulted in reducing conventional vehicle tailpipe emissions to exceptionally low levels. This transformation has been attained mainly through advancements in engine and transmission technologies and through partial electrification of vehicles. However, the technological advancements made so far alone will not be able to mitigate the issues due to increasing GHGs and air pollution in urban areas.
Technical Paper

Balance of Electrical Power Requirements through Smart Electric Power Management

2011-04-12
2011-01-0042
This paper examines Smart Electric Power Management as it pertains to when the vehicle charging system is active. Over the past decade there have been several factors at play which have stressed the demands placed upon the vehicle electrical power system. Many of these factors present challenges to electrical power that are at cross-purposes with one another. For example, demands of new and existing electrical loads, customer expectations about load performance and battery life, and the push by governments' world-wide for increased fuel economy (FE) and reduced CO2 emissions all have direct impact and can be directly impacted by decisions made in electric power design. As the electrification of the vehicle has progressed we now have much more specific vehicle state data available and the means to share this information among on-board computers through serial data link connectivity.
Journal Article

Brake Particulate Matter Emissions Measurements for Six Light-Duty Vehicles Using Inertia Dynamometer Testing

2020-10-05
2020-01-1637
Emissions of particulate matter, or PM, due to brake wear, are not well quantified in current air pollutant emission inventories. Current emission factor models need to be updated to reflect new technologies and materials and to incorporate the effects of changing driving habits and speeds. While emission regulations drive technical innovations that are significantly reducing PM emissions in vehicle exhaust, non-exhaust automotive emissions remain unregulated. Current emission factor models need to be updated to reflect the changes caused by new technologies, materials, and speed-dependent vehicle usage. Most research regarding brake emissions relies on a laboratory setting. Laboratory testing has allowed researchers, application engineers, data modeling engineers, and environmental agencies to generate large datasets for multiple vehicle configurations and friction couple designs.
Technical Paper

CARB Evaporative Emissions Test Program

1999-10-25
1999-01-3528
In 1997 and 1998, the California Air Resources Board (CARB) conducted an extensive evaporative emissions test program to assess the feasibility of reducing evaporative emissions standards from the current 2 gram per test total hydrocarbon (THC) standard. Seven vehicles were tested and five modified in order to determine what emissions levels would be feasible. Emissions reductions of approximately 40% resulted from these modifications. The ARB also conducted studies of non-fuel background emissions and of emissions test variability.
Journal Article

Calculation of Heating Value for Diesel Fuels Containing Biodiesel

2013-04-08
2013-01-1139
Biodiesel, a fuel comprised of mono-alkyl esters of long-chain fatty acids also known as Fatty Acid Methyl Esters(FAME), derived from vegetable oils or animal fats, has become an important commercial marketplace automotive fuel in the United States (US) and around the world over last few years. FAME biodiesels have many chemical and physical property differences compared to conventional petroleum based diesel fuels. Also, the properties of biodiesel vary based on the feedstock chosen for biodiesel production. One of the key differences between petroleum diesel fuels and biodiesel is the energy content. The energy content, or heating value, is an important property of motor fuel, since it directly affects the vehicle fuel economy. While the energy content can be measured by combustion of the fuel in a bomb calorimeter, this analytical laboratory testing is time consuming and expensive.
Technical Paper

California's Heavy-Duty Vehicle Smoke and Tampering Inspection Program

1991-08-01
911669
Emissions from heavy-duty vehicles are a major contributor to California's air quality problems. Emissions from these vehicles account for approximately 30% of the nitrogen oxide and 75% of the particulate matter emissions from the entire on-road vehicle fleet. Additionally, excessive exhaust smoke from in-use heavy-duty diesel vehicles is a target of numerous public complaints. In response to these concerns, California has adopted an in-use Heavy-Duty Vehicle Smoke and Tampering Inspection Program (HDVIP) designed to significantly reduce emissions from these vehicles. Pending promulgation of HDVIP regulations, vehicles falling prescribed test procedures and emission standards will be issued citations. These citations mandate expedient repair of the vehicle and carry civil penalties ranging from $300 to $1800. Failure to clear citations can result in the vehicle being removed from service.
Technical Paper

California's Revised Heavy-Duty Vehicle Smoke and Tampering Inspection Program

1998-08-11
981951
Heavy-duty vehicles account for approximately 30 percent of the oxides of nitrogen (NOx) and 65 percent of the particulate matter (PM) emissions from the entire California on-road fleet, despite the fact that these vehicles comprise only 2 percent of the same. To meet legislative mandates to reduce excess smoke emissions from in-use heavy-duty diesel-powered vehicles, the Air Resources Board (ARB or Board) adopted, in December 1997, amendments to the regulations governing the operation and enforcement of the Heavy-Duty Vehicle Inspection Program (HDVIP or the “roadside” program) and the Periodic Smoke Inspection Program (PSIP or the “fleet” program). The initial roadside program was adopted in November 1990 in response to Senate Bill (SB) 1997 (stat. 1988, ch. 1544, Presley), and enforced from 1991 to 1993. It was suspended in October 1993, when the Board redirected staff to investigate reformulated fuels issues.
Technical Paper

Cellulosic Ethanol Fuel Quality Evaluation and its Effects on PFI Intake Valve Deposits and GDI Fuel Injector Plugging Performance

2013-04-08
2013-01-0885
The U.S. Renewable Fuel Standard 2 (RFS2) mandates the use of advanced renewable fuels such as cellulosic ethanol to be blended into gasoline in the near future. As such, determining the impact of these new fuel blends on vehicle performance is important. Therefore, General Motors conducted engine dynamometer evaluations on the impact of cellulosic ethanol blends on port fuel injected (PFI) intake valve deposits and gasoline direct injected (GDI) fuel injector plugging. Chemical analysis of the test fuels was also conducted and presented to support the interpretation of the engine results. The chemical analyses included an evaluation of the specified fuel parameters listed in ASTM International's D4806 denatured fuel ethanol specification as well as GC/MS hydrocarbon speciations to help identify any trace level contaminant species from the new ethanol production processes.
Technical Paper

Characterization of Gaseous Emissions from Blended Plug-In Hybrid Electric Vehicles during High-Power Cold-Starts

2018-04-03
2018-01-0428
There is a distinct difference between plug-in hybrid electric vehicles in the market today. One key distinction that can be made is to classify a plug-in hybrid electric vehicle (PHEV) according to its operational behavior in charge depleting (CD) mode. Some PHEVs are capable of using the electric-only propulsion system to achieve all-electric operation for all driving conditions in CD mode, including full power performance. In contrast, some PHEVs, henceforth termed “blended PHEVs”, cannot satisfy the power requirements of all driving conditions with the electric-only propulsion system and occasionally utilize blended CD operation whereby it is necessary to blend the use of the internal combustion (IC) engine with the use of the electric motor(s) to help power the vehicle.
Technical Paper

Comparison of Exhaust Emissions from a Vehicle Fueled with Methanol-Containing Additives for Flame Luminosity

1993-03-01
930220
Two additive blends proposed for improving the flame luminosity in neat methanol fuel were investigated to determine the effect of these additives on the exhaust emissions in a dual-fueled Volkswagen Jetta. The two blends contained 4 percent toluene plus 2 percent indan in methanol and 5 percent cyclopentene plus 5 percent indan in methanol. Each blend was tested for regulated and unregulated emissions as well as a speciation of the exhaust hydrocarbons resulting from use of each fuel. The vehicle exhaust emissions from these two fuel blends were compared to the Coordinating Research Council Auto-Oil national average gasoline (RF-A), M100, and M85 blended from RF-A. Carter Maximum Incremental Reactivity Factors were applied to the speciated hydrocarbon emission results to determine the potential ozone formation for each fuel. Toxic emissions as defined in the 1990 Clean Air Act were also compared for each fuel.
Technical Paper

Comparison of the Exhaust Emissions from California Phase 1 (without oxygenates) and Phase 2 (with oxygenates) Fuel:A Case Study of 11 Passenger Vehicles

1996-05-01
961221
While most studies addressing the fuel effects are based on the Federal Test Procedure (FTP), there are limited studies investigating the fuel effects outside FTP test conditions. In this study, we investigated the differences in exhaust emissions from California Phase 1 to Phase 2 reformulated gasoline over a wide range of speed and ambient temperatures. Eleven catalyst equipped passenger vehicles were tested. The vehicles were comprised of three fuel delivery system configurations, namely, three from carburetor (CARBU), three from throttle body injection (TBI), and five from multi-port fuel injection (MPFI) group. Each vehicle was given 60 tests with the combination of two reformulated fuels: Phase 1 (without oxygenates) and Phase 2 (with oxygenates), three temperatures (50, 75, and 100 °F), and ten speed cycles (average speed ranges from 4 mph to 65 mph).
X