Refine Your Search

Topic

Author

Search Results

Technical Paper

2002 Pontiac Montana Frequency Improvements Employing Structural Foam

2001-04-30
2001-01-1609
This paper documents a joint development process between General Motors and Dow Automotive to improve primary body structure frequencies on the GM family of midsize vans by utilizing cavity-filling structural foam. Optimum foam locations, foam quantity, and foam density within the body structure were determined by employing both math-based modeling and vehicle hardware testing techniques. Finite element analysis (FEA) simulations of the Body-In-White (BIW) and “trimmed body” were used to predict the global body structure modes and associated resonant frequencies with and without structural foam. The objective of the FEA activity was to quantify frequency improvements to the primary body structure modes of matchboxing, bending, and torsion when using structural foam. Comprehensive hardware testing on the vehicle was also executed to validate the frequency improvements observed in the FEA results.
Technical Paper

A Connectorized Passive Optical Star for Automotive Networking Applications

1994-03-01
940798
This paper introduces for the first time a fully connectorized passive optical star for use with plastic optical fiber that addresses all automotive application requirements. A unique mixing element is presented that offers linear expandability, uniformity of insertion loss, and packaging flexibility. The star is constructed of all plastic molded components to make it low cost and produceable in high volume and is single-ended to facilitate vehicle integration. The star is connectorized to facilitate assembly into the vehicle power and signal distribution system.
Technical Paper

A Predictive Design Methodology for Active Top Pads During Airbag Deployment

1999-03-01
1999-01-0688
Using a combination of engineering test experience, explicit finite-element analysis, and advanced materials characterization, a predictive engineering method has been developed that can assist in the development of active top pads. An active top pad is the component of the instrument panel that covers the passenger airbag module and articulates during a crash event, allowing the airbag to deploy. This paper highlights the predictive analysis method, analytical results interpretation, and suggestions for future development.
Technical Paper

A Predictive Process for Spring Failure Rates in Automotive Parts Applications

1991-02-01
910356
This paper discusses an analytical technique for computing the failure rate of steel springs used in automotive part applications. Preliminary computations may be performed and used to predict spring failure rates quickly at a very early stage of a product development cycle and to establish program reliability impact before commitment. The analytical method is essentially a combination of various existing procedures that are logically sequenced to compute a spring probability of failure under various operational conditions. Fatigue life of a mechanical component can be computed from its S-N curve. For steels, the S-N curve can be approximated by formulae which describe the fatigue life as a function of its endurance limit and its alternating stress. Most springs in service are preloaded and the actual stress fluctuates about a mean level. In order to compute an equivalent alternating stress with zero mean, an analytical method based on the Goodman Diagram is used.
Technical Paper

An Automotive Electronic Climate Control Heating and Air Conditioning System

1980-06-01
800792
The Cadillac Electronic Climate Control heating and air conditioning system provides automatic control of the passenger compartment temperature. It utilizes a microcomputer to control the operation of electrical, mechanical and vacuum components that regulate the amount and temperature of air delivered into the car to maintain the “customer set” comfort level. The first step in the evolution of this new system was to define the performance requirements. With this established, the system was then designed, tested and developed in the laboratory and on the road until this desired performance was achieved.
Technical Paper

Application of Variation Simulation in Body Assembly Process Design

2001-10-16
2001-01-3064
Build variation has long been recognized as one of the most important factors in vehicle performance. In this study an elastic assembly simulation program is used to guide a wheelhouse assembly process design to reduce build variation. Five (5) different clamping schemes are evaluated through the simulation program. From the five proposed process design choices, the best assembly process was identified, which results in reduced assembly variation and less tooling and manufacturing costs. Two different variation simulation approaches, one based on perturbation and the other based on Design of Experiments, were used to predict the assembly variation. Good agreement between the two approaches provided a validity check for the simulation tool.
Technical Paper

Application of a Constrained Layer Damping Treatment to a Cast Aluminum V6 Engine Front Cover

2005-05-16
2005-01-2286
Constrained Layer Damping (CLD) treatments have long provided a means to effectively impart damping to a structure [1, 2 and 3]. Traditionally, CLD treatments are constructed of a very thin polymer layer constrained by a thicker metal layer. Because the adhesion of a thin polymer layer is very sensitive to surface finish, surfaces that a CLD treatment can be effectively applied to have historically been limited to those that are very flat and smooth. New developments in material technology have provided thicker materials that are very effective and less expensive to apply when used as the damping layer in a CLD treatment. This paper documents the effectiveness of such a treatment on a cast aluminum front cover for a V6 engine. Physical construction of the treatment, material properties and design criteria will be discussed. Candidate applications, the assembly process, methods for secondary mechanical fastening will be presented.
Technical Paper

Automotive A/C System Integrated with Electrically-Controlled Variable Capacity Scroll Compressor and Fuzzy Logic Refrigerant Flow Management

2001-03-05
2001-01-0587
This paper describes the recent efforts on developing an automotive climate control system throughout integrating an electrically-controlled variable capacity scroll compressor with a fuzzy logic control-based refrigerant flow management. Applying electrically-controlled variable capacity compressor technology to climate control systems has a significant impact on improving vehicle fuel economy, achieving higher passenger comfort level, and extending air and refrigerant temperature controllability as well. In this regard, it is very important for automotive climate control engineers to layout a system-level temperature control strategy so that the operation of variable capacity compressor can be optimized through integrating the component control schemes into the system-level temperature control. Electronically controlled expansion devices have become widely available in automotive air conditioning (A/C) systems for the future vehicle applications(1, 2, 3 and 4).
Technical Paper

Brake Squeal Analysis by Finite Elements

1999-05-17
1999-01-1736
An approximate analysis method for brake squeal is presented. Using MSC/NASTRAN a geometric nonlinear solution is run using a friction stiffness matrix to model the contact between the pad and rotor. The friction coefficient can be pressure dependent. Next, linearized complex modes are found where the interface is set in a slip condition. Since the entire interface is set sliding, it produces the maximum friction work possible during the vibration. It is a conservative measure for stability evaluation. An averaged friction coefficient is measured and used during squeal. Dynamically unstable modes are found during squeal. They are due to friction coupling of neighboring modes. When these modes are decoupled, they are stabilized and squeal is eliminated. Good correlation with experimental results is shown. It will be shown that the complex modes baseline solution is insensitive to the type of variations in pressure and velocity that occur in a test schedule.
Technical Paper

Comprehensive Design Reliability Process for the Automotive Component Industry via the Integration of Standard Reliability Methods

1991-02-01
910357
This paper will focus on the process, as used at AC Rochester, of performing reliability analyses early in the design phase of automotive component development and the integration of specific techniques and methods. This methodology forms an effective tool that achieves the identification of component failure modes and mechanisms with greater confidence than any single technique and provides for the simple and direct communication of the results. In addition, our experience shows that this process provides the maximum preventive impact on the product during the design phase, thus yielding demonstrably improved reliability characteristics on the production part. Specifically, a four-step up-front analysis process can facilitate the usefulness of various analytical techniques to the identification of product reliability problems.
Technical Paper

Daytime Running Lights (Drls)-A North American Success Story

2001-06-04
2001-06-0044
Many traffic collisions are the result of the driver's failure to notice the other vehicle. It is often cited in police reports that the driver "looked but did not see.'' The purpose of Daytime Running Lights (DRLs) is to increase the visual contrast of DRL-equipped vehicles. Visual contrast, which is the difference in brightness between two areas, is an important characteristic enabling a driver to detect objects. This paper begins with a brief regulatory history of DRLs in the U.S. and how General Motors Corporation (GM) introduced DRL-equipped vehicles. It also describes a DRL effectiveness study conducted by Exponent Failure Analysis Associates of San Francisco for General Motors Corporation. The study compared the collision rates of specific General Motors Corporation, Saab, Volvo and Volkswagen vehicles before and immediately after the introduction of DRLs. Since DRLs are not visible from behind a vehicle, rear-end collisions were not included in the study.
Technical Paper

Diagnostic Procedures for Passive Optical Star Vehicle Networks

1994-03-01
940800
Passive star networks have been shown to be the best architecture for high speed vehicle networks. This paper attempts to describe how problems in passive star networks can be diagnosed in the field. The potential physical layer failure modes for passive star networks are detailed, and a network test tool is described which is capable of determining whether a media fault exists and locating the position of that fault. The application of the test tool to potential failure modes is discussed.
Technical Paper

Dynamic Stress Correlation and Modeling of Driveline Bending Integrity for 4WD Sport Utility Vehicles

2002-03-04
2002-01-1044
Reducing the high cost of hardware testing with analytical methods has been highly accelerated in the automotive industry. This paper discusses an analytical model to simulate the driveline bending integrity test for the longitudinal 4WD-driveline configuration. The dynamic stresses produced in the adapter/transfer case and propeller shaft can be predicted analytically using this model. Particularly, when the 4WD powertrain experiences its structural bending during the operation speed and the propeller shaft experiences the critical whirl motion and its structural bending due to the inherent imbalance. For a 4WD-Powertrain application, the dynamic coupling effect of a flexible powertrain with a flexible propeller shaft is significant and demonstrated in this paper. Three major subsystems are modeled in this analytical model, namely the powertrain, the final rear drive, and the propeller shafts.
Technical Paper

Effect of Simulated Material Properties and Residual Stresses on High Cycle Fatigue Prediction in a Compacted Graphite Iron Engine Block

2010-04-12
2010-01-0016
Casting, machining and structural simulations were completed on a V8 engine block made in Compacted Graphite Iron (CGI) for use in a racing application. The casting and machining simulations generated maps of predicted tensile strength and residual stress in the block. These strength and stress maps were exported to a finite element structural model of the machined part. Assembly and operating loads were applied, and stresses due to these loads were determined. High cycle fatigue analysis was completed, and three sets of safety factors were calculated using the following conditions: uniform properties and no residual stress, predicted properties and no residual stress, and predicted properties plus residual stress.
Technical Paper

Establishing Brake Design Parameters for Customer Satisfaction

1993-03-01
930799
Brake engineers are very familiar with designing automotive brake systems to meet performance requirements such as those specified in FMVSS 105. However, merely complying with governmental regulations does not ensure that the resulting brake system will satisfy customers of the product. Many attributes of brake performance are characterized by our customers in very subjective terms. In many cases it is not apparent how to incorporate these subjective customer desires into our product designs. This paper describes a process for transforming customer preferences about brake system performance expressed in subjective terms into objective parameters for brake system design. The process for converting customer preferences into design parameters involves several steps. The desires of the customer must be identified. This is often done in marketing clinics, customer interviews or surveys.
Technical Paper

FEA Predictions and Test Results from Magnesium Beams in Bending and Axial Compression

2010-04-12
2010-01-0405
Finite element analysis (FEA) predictions of magnesium beams are compared to load versus displacement test measurements. The beams are made from AM60B die castings, AM30 extrusions and AZ31 sheet. The sheet and die cast beams are built up from two top hat sections joined with toughened epoxy adhesive and structural rivets. LS-DYNA material model MAT_124 predicts the magnesium behavior over a range of strain rates and accommodates different responses in tension and compression. Material test results and FEA experience set the strain to failure limits in the FEA predictions. The boundary conditions in the FEA models closely mimic the loading and constraint conditions in the component testing. Results from quasi-static four-point bend, quasi-static axial compression and high-speed axial compression tests of magnesium beams show the beam's behavior over a range of loadings and test rates. The magnesium beams exhibit significant material cracking and splitting in all the tests.
Technical Paper

Field Experience with the Energy Absorbing Steering Column

1969-02-01
690183
General Motors introduced in its 1967 passenger cars an innovation in the concept of vehicle safety called the “energy-absorbing steering column.” A statistical study of its performance has been conducted on 3000 1968 General Motors passenger cars which were involved in accidents. This field accident study is then compared with raw accident data obtained from ACIR. Various other aspects of the performance of the column are investigated in this summary of field accident experience.
Technical Paper

Free Form Fabrication Beginners Workshop

1994-04-01
941230
Free form fabrication, or rapid prototyping as it is commonly known, is the creation of a physical entity, directly from numerical description, using an additive process. The mathematical data used is typically in the form of a 3D CAD file, but it may also be obtained from a reverse engineering process. This paper presents a review of three of the leading FFF (free form fabrication) systems which are commercially available. Time constraints will allow us to describe only three of these products. Although this does not do justice to a technology where there are more than 30 different systems in various stages of development, these examples represent the vast majority of machines which are in the marketplace today.
Technical Paper

General Motors Passenger Tire Performance Criteria

1976-02-01
762008
The purpose of this paper is to provide an overview of the process of selection, development and approval of General Motors original equipment TPC passenger car tires. We have attempted to minimize detail in each specific area, but intend to provide a general comprehension of the thought processes involved and the procedures used to select the proper tire size and type for a vehicle. We will then describe the tire performance criteria involved in the overall development and approval process and will subsequently consider tire noise requirements in somewhat greater detail. The paper will conclude by describing the General Motors Tire Performance Criteria (TPC) System, which is a documentation of the General Motors Tire Performance requirements and test procedures.
X