Refine Your Search

Topic

Author

Search Results

Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

2006 Chevrolet Corvette C6 Z06 Aerodynamic Development

2005-04-11
2005-01-1943
This paper is intended to give a general overview of the key aerodynamic developments for the 2006 Chevrolet Corvette C6 Z06. Significant computational and wind tunnel time were used to develop the 2006 Z06 to provide it with improved high speed stability, increased cooling capability and equivalent drag compared to the 2004 Chevrolet Corvette C5 Z06.
Technical Paper

2006 Corvette Z06 Carbon Fiber Fender- Engineering, Design, and Material Selection Considerations

2005-04-11
2005-01-0468
General Motor's Corvette product engineering was given the challenge to find mass reduction opportunities on the painted body panels of the C6 Z06 through the utilization of carbon fiber reinforced composites (CFRC). The successful implementation of a carbon fiber hood on the 2004 C5 Commemorative Edition Z06 Corvette was the springboard for Corvette Team's appetite for a more extensive application of CFRC on the C6 Z06 model. Fenders were identified as the best application for the technology given their location on the front of the vehicle and the amount of mass saved. The C6 Z06 CFRC fenders provide 6kg reduction of vehicle mass as compared to the smaller RRIM fenders used on the Coupe and Convertible models.
Technical Paper

A Subsystem Crash Test Methodology for Retention of Convenience Organizer Equipment System in Rear Impact

2005-04-11
2005-01-0735
Any equipment system or vehicle component like the Convenience Organizer storage system needs to be retained within the cargo compartment without intruding into the passenger compartment for occupant safety during a high speed impact. This paper outlines a test method to evaluate the retention of such a system in a rear impact environment. The method utilizes a low speed barrier to simulate a high speed RMB (Rear Moving Barrier) impact. The content of the low speed RMB impact test setup was developed utilizing DYNA3D analytical simulation results from a full vehicle model subjected to high-speed RMB impact. The retention of the equipment developed through this test method was confirmed on a full scale rear impact test.
Technical Paper

Accelerated Glass Reveal Molding Test

1998-02-23
980718
Over the past 20 years, polyvinyl chloride (PVC) has almost replaced metal in stationary glass reveal moldings with dramatic part cost savings on cars and trucks world-wide. The process of assembly is generally simple and convenient but to replace a reveal molding can be difficult. Many times, in order to replace the molding, it may also be necessary to replace or reseal the glass. In short, PVC reveal moldings, relatively inexpensive parts, are very expensive to service. Outside of general assembly and processing issues, there are 5 variables that may cause a failure in the performance of a stationary glass reveal molding. They are as follows: material degradation, crystallization, plasticizer loss, material properties, and molded-in stress. Because of modern standard PVC formulations and the material requirements of most automotive companies, material degradation, crystallization and plasticizer loss do not commonly cause failure. Material properties and molded-in stress do.
Technical Paper

Advanced Simulation Technology Using LS-DYNA® for Automotive Body Manufacturing Process: From Stamping To Assembly

2009-04-20
2009-01-0983
In automotive body manufacturing, there are two processes are often applied, Nominal Build and Functional Build. The Nominal Build process requires all individual stamping components meet their nominal dimensions with specified tolerances. While, the Functional Build process emphasizes more on the tolerances of the entire assembly as opposed to those of the individual stamped parts. The common goal of both processes is to build the body assemblies that meet the specified tolerances. Although there is strict tolerance specified for individual stamping parts the finished stampings frequently are released to assembly process with certain levels of dimensioning deviations, or they are within the specified tolerances but require heavy clamping during assembly. It is of high interest to predict the dimensional deviations in the stamping sub-assembly or body-in-white assembly process.
Technical Paper

An Investigation of Sample Bag Hydrocarbon Emissions and Carbon Dioxide Permeation Properties

2004-03-08
2004-01-0593
The equipment for collecting dilute exhaust samples involves the use of bag materials (i.e., Tedlar®) that emit hydrocarbons that contaminate samples. This study identifies a list of materials and treatments to produce bags that reduce contamination. Based on the average emission rates, baked Tedlar®, Capran® treated with alumina deposition, supercritical CO2 extracted Kynar® and supercritical CO2 extracted Teflon NXT are capable of achieving the target hydrocarbon emission rate of less than 15 ppbC per 30 minutes. CO2 permeation tests were also performed. Tedlar, Capran, Kynar and Teflon NXT showed comparable average permeation rates. Based on the criteria of HC emission performance, changes in measured CO2 concentration, ease of sealing, and ease of surface treatment, none of the four materials could be distinguished from one another.
Technical Paper

Brake-by-Wire, Motivation and Engineering - GM Sequel

2006-10-08
2006-01-3194
Achieving optimum results and developing systems that are towards production intent is a challenge that the General Motors Sequel platform not only overcame, but also enhanced by providing an opportunity to achieve maximum integration of new technologies. Implementation of these new technologies during this project enabled us to understand the impact and rollout for future production programs to enhance performance and add features that will enable General Motors to make quantum leaps in the automotive industry. Presented are aspects, objectives and features of the Sequel's advanced Brake-By-Wire system as it migrates from concept towards production readiness. Also included in the paper are the objectives for system design; functional/performance requirements and the desired fault tolerance. The system design, component layout, control and electrical system architecture overviews are provided.
Technical Paper

Concept and Implementation of a Robust HCCI Engine Controller

2009-04-20
2009-01-1131
General Motors recently demonstrated two driveable test vehicles powered by a Homogeneous Charge Compression Ignition (HCCI) engine. HCCI combustion has the potential of a significant fuel economy benefit with reduced after-treatment cost. However, the biggest challenge of realizing HCCI in vehicle applications is controlling the combustion process. Without a direct trigger mechanism for HCCI's flameless combustion, the in-cylinder mixture composition and temperature must be tightly controlled in order to achieve robust HCCI combustion. The control architecture and strategy that was implemented in the demo vehicles is presented in this paper. Both demo vehicles, one with automatic transmission and the other one with manual transmission, are powered by a 2.2-liter HCCI engine that features a central direct-injection system, variable valve lift on both intake and exhaust valves, dual electric camshaft phasers and individual cylinder pressure transducers.
Technical Paper

Custom Real-Time Interface Blockset Development in Matlab/Simulink for On-Target Rapid Prototyping

2006-04-03
2006-01-0169
In GM R&D Powertrain/Engine Control Group, rapid prototyping controller (RPC) systems with Matlab/Simulink are used extensively to design, simulate and implement advanced engine control algorithms and models. However, those RPC systems use powerful microprocessors with large amounts of RAM contrary to engine control modules (ECM) in production vehicles. Therefore, a thorough analysis on the comparatively much more complicated algorithms and models cannot be performed during the research stage, since there are not enough tools to enable the smooth transition from Matlab/Simulink to the production type processor. The Real-Time Interface (RTI) Blockset for a production like microprocessor would close the transition gap between rapid prototyping controller systems and production type microprocessors by leveraging the power and popularity of Matlab/Simulink in control engineering world and automatic code generation tools.
Technical Paper

Cylinder Pressure Data Quality Checks and Procedures to Maximize Data Accuracy

2006-04-03
2006-01-1346
Cylinder pressure data is so completely integral to the combustion system development process that ensuring measurements of the highest possible accuracy is of paramount importance. Three main areas of the pressure measurement and analysis process control the accuracy of measured cylinder pressure and its derived metrics: 1) Association of the pressure data to the engine's crankshaft position or cylinder volume 2) Pegging, or referencing, the pressure sensor output to a known, absolute pressure level 3) The raw, relative pressure output of the piezoelectric cylinder pressure sensor Certain cylinder pressure-based metrics, such as mean effective pressures (MEP) and heat release parameters, require knowledge of the cylinder volume associated with the sampled pressure data. Accurate determination of the cylinder volume is dependent on knowing the rotational position of the crankshaft.
Technical Paper

Design and Fabrication of an Aluminum Engine Cradle for a General Motors Vehicle

1999-03-01
1999-01-0659
Automotive manufacturers have intensified their efforts to increase vehicle fuel economy by reducing weight without sacrificing vehicle size and comfort. Vehicle areas that offer the potential to reduce weight include chassis structural components. A cradle or a subframe is a chassis structural component that is utilized to support the engine/powertrain in front wheel drive vehicles. Traditionally, engine cradles have been manufactured by using stamped steel weldments. Recently, automotive designers are considering alternative processes, i.e., hydro-forming, as well as fabricating engine cradles using lightweight materials. The objective of this paper is to describe the development of an aluminum engine cradle for a General Motors's midsize vehicle. The design criteria and structural performance requirements for this cradle are presented along with an overview of the manufacturing processes used to produce this lightweight structural part.
Technical Paper

Design of a Full-Scale Impact System for Analysis of Vehicle Pedestrian Collisions

2005-04-11
2005-01-1875
The complexity of vehicle-pedestrian collisions necessitates extensive validation of pedestrian computational models. While body components can be individually simulated, overall validation of human pedestrian models requires full-scale testing with post mortem human surrogates (PMHS). This paper presents the development of a full-scale pedestrian impact test plan and experimental design that will be used to perform PMHS tests to validate human pedestrian models. The test plan and experimental design is developed based on the analysis of a combination of literature review, multi-body modeling, and epidemiologic studies. The proposed system has proven effective in testing an anthropometrically correct rescue dummy in multiple instances. The success of these tests suggests the potential for success in a full-scale pedestrian impact test using a PMHS.
Technical Paper

Development and Control of Electro-hydraulic Fully Flexible Valve Actuation System for Diesel Combustion Research

2007-10-29
2007-01-4021
Fully flexible valve actuation (FFVA) system, often referred to as camless valvetrain, employs electronically controlled actuators to drive the intake and/or exhaust valves. This technology enables the engine controller to tailor the valve event according to the engine operating condition in real-time to improve fuel economy, emissions and performance. At GM Research and Development Center, we have developed laboratory electro-hydraulic FFVA systems for single cylinder gasoline engines. The objective of this work is to develop a FFVA system for advanced diesel combustion research. There are three major differences between gasoline and diesel engines in terms of applying the FFVA systems. First, the orientation of the diesel engine valves and the location of the fuel injection system complicate the packaging issue. Second, the clearance between the valves and the piston for diesel engines are extremely small.
Technical Paper

Development and Validation of a Mean Value Engine Model for Integrated Engine and Control System Simulation

2007-04-16
2007-01-1304
This paper describes the development of a mean value model for a turbocharged diesel engine. The objective is to develop a fast-running engine model with sufficient accuracy over a wide range of operating conditions for efficient evaluation of control algorithms and control strategies. The mean value engine model was derived from a detailed 1D engine model, using the Design of Experiments (DOE) and hybrid Radial Basis Functions (RBF) to approximate the simulation results of the detailed model for cylinder quantities (e.g., the engine volumetric efficiency, the indicated efficiency, and the energy fraction of the exhaust gas). Furthermore, the intake and exhaust systems (especially intake and exhaust manifolds) were completely simplified by lumping flow components together. In addition, to compare with hybrid RBF, neural networks were also used to approximate the simulation results of the detailed engine model.
Technical Paper

Development of a Rapid Prototyping Controller-based Full-Authority Diesel Engine Controller

2005-04-11
2005-01-1344
A rapid prototyping controller (RPC) based, full-authority, diesel control system is developed, implemented, tested and validated on FTP cycle. As rapid prototyping controller, dSPACE Autobox is coupled with a fast processor based slave for lower level I/O control and a collection of in-house designed interface cards for signal conditioning. The base software set implemented mimics the current production code for a production diesel engine. This is done to facilitate realistic and accurate comparison of production algorithms with new control algorithms to be added on future products. The engine is equipped with all the state-of-the art subsystems found in a modern diesel engine (common rail fuel injection, EGR, Turbocharger etc.).
Technical Paper

Development of an Improved Cosmetic Corrosion Test for Finished Aluminum Autobody Panels

2007-04-16
2007-01-0417
Since 2000, an Aluminum Cosmetic Corrosion task group within the SAE Automotive Corrosion and Protection (ACAP) Committee has existed. The task group has pursued the goal of establishing a standard test method for in-laboratory cosmetic corrosion evaluations of finished aluminum auto body panels. A cooperative program uniting OEM, supplier, and consultants has been created and has been supported in part by USAMP (AMD 309) and the U.S. Department of Energy. Prior to this committee's formation, numerous laboratory corrosion test environments have been used to evaluate the performance of painted aluminum closure panels. However, correlations between these laboratory test results and in-service performance have not been established. Thus, the primary objective of this task group's project was to identify an accelerated laboratory test method that correlates well with in-service performance.
Technical Paper

Development of the 2006 Corvette Z06 Structural Cast Magnesium Crossmember

2005-04-11
2005-01-0340
Since its very beginning in 1953, Corvette has been a pioneer in light weight material applications. The new 6th generation corvette high performance Z06 model required aggressive weight savings to achieve its performance and fuel economy targets. In addition to aluminum body structure and some carbon fiber components, the decision to use a magnesium front crossmember was identified to help achieve the targets. An overview of the Structural Cast Magnesium Development (SCMD) project will be presented which will provide information on key project tasks. Project focus was to develop the science and technical expertise to manufacture and validate large structural magnesium castings, which provide a weight reduction potential of 35 percent with respect to aluminum. The die cast magnesium cradle is being produced from a Mg-Al-RE alloy, designated AE44, for high temperature creep and strength performance as well as casting ductility requirements.
Journal Article

Development of the Combustion System for General Motors' 3.6L DOHC 4V V6 Engine with Direct Injection

2008-04-14
2008-01-0132
General Motors' 3.6L DOHC 4V V6 engine has been upgraded to provide substantial improvements in performance, fuel economy, and emissions for the 2008 model year Cadillac CTS and STS. The fundamental change was a switch from traditional manifold-port fuel injection (MPFI) to spark ignition direct injection (SIDI). Additional modifications include enhanced cylinder head and intake manifold air flow capacities, optimized camshaft profiles, and increased compression ratio. The SIDI fuel system presented the greatest opportunities for system development and optimization in order to maximize improvements in performance, fuel economy, and emissions. In particular, the injector flow rate, orifice geometry, and spray pattern were selected to provide the optimum balance of high power and torque, low fuel consumption, stable combustion, low smoke emissions, and robust tolerance to injector plugging.
X