Refine Your Search

Topic

Author

Search Results

Technical Paper

2006 Corvette Z06 Carbon Fiber Fender- Engineering, Design, and Material Selection Considerations

2005-04-11
2005-01-0468
General Motor's Corvette product engineering was given the challenge to find mass reduction opportunities on the painted body panels of the C6 Z06 through the utilization of carbon fiber reinforced composites (CFRC). The successful implementation of a carbon fiber hood on the 2004 C5 Commemorative Edition Z06 Corvette was the springboard for Corvette Team's appetite for a more extensive application of CFRC on the C6 Z06 model. Fenders were identified as the best application for the technology given their location on the front of the vehicle and the amount of mass saved. The C6 Z06 CFRC fenders provide 6kg reduction of vehicle mass as compared to the smaller RRIM fenders used on the Coupe and Convertible models.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

Accelerated Glass Reveal Molding Test

1998-02-23
980718
Over the past 20 years, polyvinyl chloride (PVC) has almost replaced metal in stationary glass reveal moldings with dramatic part cost savings on cars and trucks world-wide. The process of assembly is generally simple and convenient but to replace a reveal molding can be difficult. Many times, in order to replace the molding, it may also be necessary to replace or reseal the glass. In short, PVC reveal moldings, relatively inexpensive parts, are very expensive to service. Outside of general assembly and processing issues, there are 5 variables that may cause a failure in the performance of a stationary glass reveal molding. They are as follows: material degradation, crystallization, plasticizer loss, material properties, and molded-in stress. Because of modern standard PVC formulations and the material requirements of most automotive companies, material degradation, crystallization and plasticizer loss do not commonly cause failure. Material properties and molded-in stress do.
Technical Paper

Advanced Simulation Technology Using LS-DYNA® for Automotive Body Manufacturing Process: From Stamping To Assembly

2009-04-20
2009-01-0983
In automotive body manufacturing, there are two processes are often applied, Nominal Build and Functional Build. The Nominal Build process requires all individual stamping components meet their nominal dimensions with specified tolerances. While, the Functional Build process emphasizes more on the tolerances of the entire assembly as opposed to those of the individual stamped parts. The common goal of both processes is to build the body assemblies that meet the specified tolerances. Although there is strict tolerance specified for individual stamping parts the finished stampings frequently are released to assembly process with certain levels of dimensioning deviations, or they are within the specified tolerances but require heavy clamping during assembly. It is of high interest to predict the dimensional deviations in the stamping sub-assembly or body-in-white assembly process.
Technical Paper

An Application for Fatigue Damage Analysis Using Power Spectral Density from Road Durability Events

1998-02-23
980689
A method is presented to process random vibration data from a complete road durability test environment as stationary segments and then develop test profiles based on fatigue content of their power spectral densities. Background is provided on existing techniques for estimating fatigue damage in the frequency domain. A general model for stress response to acceleration is offered to address the vibration test's requirement for acceleration data and the fatigue prediction method's requirement for stress data. With these tools, the engineer can extend test correlation beyond failure modes to include retention of estimated fatigue damage. Recommendations allow for test time compression from editing and improve existing exaggeration methods.
Technical Paper

An Investigation of Sample Bag Hydrocarbon Emissions and Carbon Dioxide Permeation Properties

2004-03-08
2004-01-0593
The equipment for collecting dilute exhaust samples involves the use of bag materials (i.e., Tedlar®) that emit hydrocarbons that contaminate samples. This study identifies a list of materials and treatments to produce bags that reduce contamination. Based on the average emission rates, baked Tedlar®, Capran® treated with alumina deposition, supercritical CO2 extracted Kynar® and supercritical CO2 extracted Teflon NXT are capable of achieving the target hydrocarbon emission rate of less than 15 ppbC per 30 minutes. CO2 permeation tests were also performed. Tedlar, Capran, Kynar and Teflon NXT showed comparable average permeation rates. Based on the criteria of HC emission performance, changes in measured CO2 concentration, ease of sealing, and ease of surface treatment, none of the four materials could be distinguished from one another.
Technical Paper

Application of Elastomeric Components for Noise and Vibration Isolation in the Automotive Industry

2001-04-30
2001-01-1447
Elastomeric isolators are used in a variety of different applications to reduce noise and vibration. To use isolators effectively requires the product design and development engineer to satisfy multiple objectives, which typically include packaging restrictions, environmental criteria, limitations on motion control, load requirements, and minimum fatigue life, in addition to vibration isolation performance. An understanding of elastomeric material properties and the methods used to characterize elastomeric component behavior is necessary to achieve desired performance. Typical design criteria and functional objectives for various isolator applications, including powertrain mounts, suspension control arm bushings, shock absorber bushings, exhaust hangers, flexible couplings, cradle mounts, body mounts and vibration dampers are also discussed.
Technical Paper

Automation of Structural Fatigue/Reliability Assessment Using iSIGHT, MSC/Nastran and nCode

2005-04-11
2005-01-0823
The goal was to automate the entire analytical process of structural fatigue life variation assessment with respect to the variations associated with the geometry such as thickness, material properties and loading conditions. Consequently, the structural reliability is evaluated systematically. This process automation has been realized by using an internally developed software package called Structural Fatigue/Reliability Sensitivity II (i.e. FRS II). The package is a bundle of MSC/Nastran, nCode, iSIGHT, and internally developed program scripts.
Technical Paper

Bolt-load Retention Testing of Magnesium Alloys for Automotive Applications

2006-04-03
2006-01-0072
For automotive applications at elevated temperatures, the need for sufficient creep resistance of Mg alloys is often associated with retaining appropriate percentages of initial clamp loads in bolt joints. This engineering property is often referred to as bolt-load retention (BLR); BLR testing is a practical method to quantify the bolt load with time for engineering purposes. Therefore, standard BLR test procedures for automotive applications are desired. This report summarizes the effort in the Structural Cast Magnesium Development (SCMD) project under the United States Automotive Materials Partnership (USAMP), to provide a technical basis for recommending a general-purpose and a design-purpose BLR test procedures for BLR testing of Mg alloys for automotive applications. The summary includes results of factors influencing BLR and related test techniques from open literature, automotive industry and research carried out in this laboratory project.
Technical Paper

Design and Fabrication of an Aluminum Engine Cradle for a General Motors Vehicle

1999-03-01
1999-01-0659
Automotive manufacturers have intensified their efforts to increase vehicle fuel economy by reducing weight without sacrificing vehicle size and comfort. Vehicle areas that offer the potential to reduce weight include chassis structural components. A cradle or a subframe is a chassis structural component that is utilized to support the engine/powertrain in front wheel drive vehicles. Traditionally, engine cradles have been manufactured by using stamped steel weldments. Recently, automotive designers are considering alternative processes, i.e., hydro-forming, as well as fabricating engine cradles using lightweight materials. The objective of this paper is to describe the development of an aluminum engine cradle for a General Motors's midsize vehicle. The design criteria and structural performance requirements for this cradle are presented along with an overview of the manufacturing processes used to produce this lightweight structural part.
Technical Paper

Development of the 2006 Corvette Z06 Structural Cast Magnesium Crossmember

2005-04-11
2005-01-0340
Since its very beginning in 1953, Corvette has been a pioneer in light weight material applications. The new 6th generation corvette high performance Z06 model required aggressive weight savings to achieve its performance and fuel economy targets. In addition to aluminum body structure and some carbon fiber components, the decision to use a magnesium front crossmember was identified to help achieve the targets. An overview of the Structural Cast Magnesium Development (SCMD) project will be presented which will provide information on key project tasks. Project focus was to develop the science and technical expertise to manufacture and validate large structural magnesium castings, which provide a weight reduction potential of 35 percent with respect to aluminum. The die cast magnesium cradle is being produced from a Mg-Al-RE alloy, designated AE44, for high temperature creep and strength performance as well as casting ductility requirements.
Technical Paper

Development of the SAE Biaxial Wheel Test Load File

2004-03-08
2004-01-1578
Recently published SAE Recommended Practice J2562 - SAE Biaxial Wheel Test standardized the terminology, equipment, and test procedure for the biaxial wheel test. This test was originally presented by Fraunhofer Institut Betriebsfestigkeit - LBF (Fraunhofer Institute for Structural Durability) in SAE paper 830135 “Automotive Wheels, Method and Procedure for Optimal Design and Testing”. The first release of SAE J2562 included a generic, scalable load file applicable to wheels designed for five to eight passenger vehicles with capacity to carry a proportional amount of luggage or ballast. Future releases of SAE J2562 would include two additional load files; one applicable to light trucks that have substantial cargo capacity and one for sports cars typically limited to two passengers and marginal luggage. This report details the process used to develop the SAE Biaxial Wheel Test Load File for passenger vehicles.
Technical Paper

Discussion of Fatigue Analysis Techniques in Automotive Applications

2004-03-08
2004-01-0626
This paper is targeted to engineers who are involved in predicting fatigue life using either the strain-life approach or the stress-life approach. However, more emphasis is given to the strain-life approach, which is commonly used for fatigue life analysis in the ground vehicle industry. It attempts to discuss, modify and extend approaches in fatigue analysis, so they are best suited for structural durability engineers. Fatigue analysis requires the use of material fatigue properties, stress or strain results obtained from finite element analyses or measurements, and load data obtained from multi-body dynamic analysis or road load data acquisition. This paper examines the effects of these variables in predicting fatigue life. Various mean stress corrections, along with their advantages and disadvantages are discussed. Different stress/strain combinations such as signed von Mises, and signed Tresca are examined. Also, advanced methods such as Fatemi-Socie and Bannantine are discussed.
Technical Paper

Drum Brake Out of Roundness Reduction to Improve Brake Pulsation

2008-04-14
2008-01-0825
The drum brake pulsation is an issue that may cause a major customer complaint. One of the root causes of the drum pulsation is the deformation of the drum to an out of roundness (OOR) shape during the wheel-drum-axle assembly process under the presence of the uneven wheel flatness. This paper summarizes the newly developed OOR simulation method using ABAQUS and the counter-measures to reduce the OOR, and subsequently pulsation, by identifying the drum design parameter effects on OOR.
Technical Paper

Dynamic Spot Weld Testing

2009-04-20
2009-01-0032
Static and dynamic strength tests were performed on spot welded specimens made of dual-phase (DP) 780 and mild steels (DQSK). Lap-shear (LS) and cross-tension (CT) as well as a new mixed mode specimen were studied using MTS hydraulic universal testing machine for static tests and drop weight tower for dynamic tests. Three weld nugget sizes were made for each steel and CT and LS. DP780 with one weld size was also tested in mixed mode. Load and displacement as functions of time and fracture mode of the spot welds were recorded. Representative data are reported in this paper.
Technical Paper

Expanding the Application of Magnesium Components in the Automotive Industry: A Strategic Vision

2007-04-16
2007-01-1033
There is an increasing global realization about the need for fuel efficient vehicles. An inexpensive way to accomplish this is through mass reduction, and one of the most effective ways that this can occur is through substituting current materials with magnesium, the lightest structural metal. This document describes the results of a U.S. Automotive Materials Partnership (USAMP) sponsored study [1] that examines why magnesium use has only grown 10% per year and identifies how to promote more widespread commercial applications beyond the 5-6 kg of component currently in vehicles. The issues and concerns which have limited magnesium use are discussed via a series of research and development themes. These address concerns associated with corrosion, fastening, and minimal metalworking/non-traditional casting processing. The automotive and magnesium supplier industries have only a limited ability to develop implementation-ready magnesium components.
Technical Paper

Fatigue Strength Effect of Thread Forming Process in Cast Aluminum

2006-04-03
2006-01-0780
Two thread forming processes, rolling and cutting, were studied for their effects on fatigue in cast aluminum 319-T7. Material was excised from cylinder blocks and tested in rotating-bending fatigue in the form of unnotched and notched specimens. The notched specimens were prepared by either rolling or cutting to replicate threads in production-intent parts. Cut threads exhibited conventional notch behavior for notch sensitive materials. In contrast, plastic deformation induced by rolling created residual compressive stresses in the notch root and significantly improved fatigue strength to the point that most of the rolled specimens broke outside the notch. Fractographic and metallographic investigation showed that cracks at the root of rolled notches were deflected upon initiation. This lengthened their incubation period, which effectively increased fatigue resistance.
Technical Paper

Formability Analysis of High Strength Steel Laser Welded Blanks

2005-04-11
2005-01-1326
This paper will describe an investigation of the formability of high strength steel (HSS) laser welded blanks (LWBs). Anticipated combinations of thickness and steel grades, including high strength low alloy (HSLA) and dual phase (DP) steels were selected. The blanks were characterized through chemical analysis and mechanical testing, as well as microstructural analysis of the weld. Samples were strained in a limiting dome height tester. Weld line movement, dome height and strain at failure were then measured. Data from these tests resulted in development of forming limit diagrams, and allowed correlation of weld line movement to forming conditions. In part, the results showed that the presence of the weld has a negative influence on formability, and that balancing the load carrying capacity of each side of the blank results in minimum weld line movement in the blanks.
Technical Paper

Forming Simulation and Validation of Laminated Steel Panels

2007-04-16
2007-01-1675
Laminated steel has been increasingly applied in automotive products for vibration and noise reduction. One of the major challenges the laminated steel poses is how to simulate forming processes and predict formability severity with acceptable correlation in production environment, which is caused by the fact that a thin polymer core possesses mechanical properties with significant difference in comparison with that of steel skins. In this study a cantilever beam test is conducted for investigating flexural behavior of the laminated steel and a finite element modeling technique is proposed for forming simulation of the laminated steel. Two production panels are analyzed for formability prediction and the results are compared with those from the try-out for validation. This procedure demonstrates that the prediction and try-out are in good agreement for both panels.
Technical Paper

Free Expansion Bulge Testing of Tubes For Automotive Hydroform Applications

2004-03-08
2004-01-0832
Free expansion of straight tubes is the simplest test to evaluate tube properties for hydroforming applications and to provide basic understanding of the mechanics of tube hydroforming. A circular cylindrical tube is sealed at both ends and fluid, usually water, is pumped into the tube to increase its internal pressure to bulge and burst the tube. Previous numerical simulations of the free expansion tube test were limited to modeling the midsection of the tube under various assumptions of deformation path. The simulation results obtained deviated from the experimental results under all simulation conditions considered. A new model is developed in this paper in which the whole tube is simulated instead of considering only its mid-section. Judged by the pressure-expansion relations, the model accurately predicted free expansion hydroforming tests results.
X