Refine Your Search

Topic

Author

Search Results

Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

A Case Study on Airborne Road Noise Reduction of a Passenger Vehicle

2003-05-05
2003-01-1407
This paper presents a case study on reducing road noise of a passenger vehicle. SEA, insertion loss and sound intensity measurements were the tools used in the study. A SEA model was constructed to predict the primary paths (panels or area) contributing to the overall interior sound field. Insertion loss measurements were used to verify the primary contributing paths identified using SEA. To provide further details of the primary paths, intensity maps of identified panels were measured allowing detailed reconstruction of the contributory panels. The SEA model, insertion loss, and intensity maps aided in providing possible design fixes that will effectively reduce road noise. Finally, comparisons of predicted results versus actual results at both a subsystem and a full vehicle level are included in this paper.
Technical Paper

A Dynamic Durability Analysis Method and Application to a Battery Support Subsystem

2004-03-08
2004-01-0874
The battery support in a small car is an example of a subsystem that lends itself to mounted component dynamic fatigue analysis, due to its weight and localized attachments. This paper describes a durability analysis method that was developed to define the required enforced motion, stress response, and fatigue life for such subsystems. The method combines the large mass method with the modal transient formulation to determine the dynamic stress responses. The large mass method was selected over others for its ease of use and efficiency when working with the modal formulation and known accelerations from a single driving point. In this example, these known accelerations were obtained from the drive files of a 4-DOF shake table that was used for corresponding lab tests of a rear compartment body structure. These drive files, originally displacements, were differentiated twice and filtered to produce prescribed accelerations to the finite element model.
Technical Paper

A Multi-hop Mobile Networking Test-bed for Telematics

2005-04-11
2005-01-1484
An onboard vehicle-to-vehicle multi-hop wireless networking system has been developed to test the real-world performance of telematics applications. The system targets emergency and safety messaging, traffic updates, audio/video streaming and commercial announcements. The test-bed includes a Differential GPS receiver, an IEEE 802.11a radio card modified to emulate the DSRC standard, a 1xRTT cellular-data connection, an onboard computer and audio-visual equipment. Vehicles exchange data directly or via intermediate vehicles using a multi-hop routing protocol. The focus of the test-bed is to (a) evaluate the feasibility of high-speed inter-vehicular networking, (b) characterize 5.8GHz signal propagation within a dynamic mobile ad hoc environment, and (c) develop routing protocols for highly mobile networks. The test-bed has been deployed across five vehicles and tested over 400 miles on the road.
Technical Paper

A Subsystem Crash Test Methodology for Retention of Convenience Organizer Equipment System in Rear Impact

2005-04-11
2005-01-0735
Any equipment system or vehicle component like the Convenience Organizer storage system needs to be retained within the cargo compartment without intruding into the passenger compartment for occupant safety during a high speed impact. This paper outlines a test method to evaluate the retention of such a system in a rear impact environment. The method utilizes a low speed barrier to simulate a high speed RMB (Rear Moving Barrier) impact. The content of the low speed RMB impact test setup was developed utilizing DYNA3D analytical simulation results from a full vehicle model subjected to high-speed RMB impact. The retention of the equipment developed through this test method was confirmed on a full scale rear impact test.
Technical Paper

An Integrated Process of CFD Analysis and Design Optimization with Underhood Thermal Application

2001-03-05
2001-01-0637
With the revolutionary advances in computing power and software technology, the future trend of integrating design and CFD analysis software package to realize an automated design optimization has been explored in this study. The integrated process of UG, ICEMCFD, and FLUENT was accomplished using iSIGHT for vehicle Aero/Thermal applications. Process integration, CFD solution strategy, optimization algorithm and the practicality for real world problem of this process have been studied, and will be discussed in this paper. As an example of this application, the results of an underhood thermal design will be presented. The advantage of systematical and rapid design exploration is demonstrated by using this integrated process. It also shows the great potential of computer based design automation in vehicle Aero/Thermal development.
Technical Paper

Automation of Structural Fatigue/Reliability Assessment Using iSIGHT, MSC/Nastran and nCode

2005-04-11
2005-01-0823
The goal was to automate the entire analytical process of structural fatigue life variation assessment with respect to the variations associated with the geometry such as thickness, material properties and loading conditions. Consequently, the structural reliability is evaluated systematically. This process automation has been realized by using an internally developed software package called Structural Fatigue/Reliability Sensitivity II (i.e. FRS II). The package is a bundle of MSC/Nastran, nCode, iSIGHT, and internally developed program scripts.
Technical Paper

Brake and Cruise System Integration using Robust Engineering

2003-03-03
2003-01-1095
This paper presents a project that was done to solve an integration problem between a brake system and a cruise control system on a GM vehicle program, each of which was supplied by a different supplier. This paper presents how the problem was resolved using a CAE tool which was a combination of formulated MS/Excel spreadsheet, Overdrive (GM internal code), and iSIGHT of Engineous Software Inc, which is a process integrator and process automator. A sensitivity study of system reliability was conducted using iSIGHT. The most sensitive factor was found through the sensitivity study. Thereafter, a Robust design was obtained. The recommended Robust Design was implemented in the vehicle program, which led to a substantial cost saving. The CAE software tool (the combination) developed through the problem solving process will be used to ensure quality of brake and cruise system performance for future vehicle programs.
Technical Paper

Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting

2007-05-15
2007-01-2403
A numerical investigation of automobile sunroof buffeting on a prototype sport utility vehicle (SUV) is presented, including experimental validation. Buffeting is an unpleasant low frequency booming caused by flow-excited Helmholtz resonance of the interior cabin. Accurate prediction of this phenomenon requires accounting for the bi-directional coupling between the transient shear layer aerodynamics (vortex shedding) and the acoustic response of the cabin. Numerical simulations were performed using the PowerFLOW code, a CFD/CAA software package from Exa Corporation based on the Lattice Boltzmann Method (LBM). The well established LBM approach provides the time-dependent solution to the compressible Navier-Stokes equations, and directly captures both turbulent and acoustic pressure fluctuations over a wide range of scales given adequate computational grid resolution.
Technical Paper

Computing Transfer Functions from Mass Loaded Response of Structures

2004-03-08
2004-01-0780
This paper outlines a method for computing the transfer functions of structures using their mass loaded responses. According to the method, scaled transfer functions are computed from the response of a structure and without any knowledge of the input forces. The paper outlines the analytical approach, develops the necessary equations for the computation of transfer functions between a mass loading point and other points on a linear dynamic system. A numerical example to show the validity, advantages and limitations of the method is also provided. Currently, the method can be applied to the responses obtained from analytical simulations where it may be necessary to compute coupled response of a simulated dynamic system with other dynamic systems that are not (or cannot be) included in a simulation. It is not uncommon that many dynamic simulations exclude certain coupling effects between the main and the auxiliary systems.
Technical Paper

Concept and Implementation of a Robust HCCI Engine Controller

2009-04-20
2009-01-1131
General Motors recently demonstrated two driveable test vehicles powered by a Homogeneous Charge Compression Ignition (HCCI) engine. HCCI combustion has the potential of a significant fuel economy benefit with reduced after-treatment cost. However, the biggest challenge of realizing HCCI in vehicle applications is controlling the combustion process. Without a direct trigger mechanism for HCCI's flameless combustion, the in-cylinder mixture composition and temperature must be tightly controlled in order to achieve robust HCCI combustion. The control architecture and strategy that was implemented in the demo vehicles is presented in this paper. Both demo vehicles, one with automatic transmission and the other one with manual transmission, are powered by a 2.2-liter HCCI engine that features a central direct-injection system, variable valve lift on both intake and exhaust valves, dual electric camshaft phasers and individual cylinder pressure transducers.
Technical Paper

Corrosion Testing of 42-Volt Electrical Components

2003-03-03
2003-01-0308
As automobile power needs increase 42-volt electrical systems are being proposed for use in consumer vehicles. One concern when using these new systems is the corrosion resistance of these components, especially in underhood environments. Corrosion is an electrochemical phenomenon and as such can be altered (increased or decreased) by the application of an external current or voltage. Although unintentional, the use of a higher voltage electrical system has the ability to increase corrosion through its normal use. This program evaluated the impact of corrosion on electrical components powered by 14 and 42-volt DC systems. Accelerated corrosion test findings suggested that 42-volt systems may be more susceptible to corrosion, but without proper environmental shielding both supply system can have unacceptable degradation.
Technical Paper

Custom Real-Time Interface Blockset Development in Matlab/Simulink for On-Target Rapid Prototyping

2006-04-03
2006-01-0169
In GM R&D Powertrain/Engine Control Group, rapid prototyping controller (RPC) systems with Matlab/Simulink are used extensively to design, simulate and implement advanced engine control algorithms and models. However, those RPC systems use powerful microprocessors with large amounts of RAM contrary to engine control modules (ECM) in production vehicles. Therefore, a thorough analysis on the comparatively much more complicated algorithms and models cannot be performed during the research stage, since there are not enough tools to enable the smooth transition from Matlab/Simulink to the production type processor. The Real-Time Interface (RTI) Blockset for a production like microprocessor would close the transition gap between rapid prototyping controller systems and production type microprocessors by leveraging the power and popularity of Matlab/Simulink in control engineering world and automatic code generation tools.
Technical Paper

Designing Automotive Subsystems Using Virtual Manufacturing and Distributed Computing

2008-04-14
2008-01-0288
Adopting robust design principles is a proven methodology for increasing design reliability. General Motors Powertrain (GMPT) has incorporated robust design principles into their Signal Delivery Subsystem (SDSS) development process by moving traditional prototype manufacturing and test functions from hardware to software. This virtual manufacturing technique, where subsystems are built and tested using simulation software, increases the number of possible prototype iterations while simultaneously decreasing the time required to gather statistically meaningful test results. This paper describes how virtual manufacturing was developed using distributed computing.
Technical Paper

Development and Control of Electro-hydraulic Fully Flexible Valve Actuation System for Diesel Combustion Research

2007-10-29
2007-01-4021
Fully flexible valve actuation (FFVA) system, often referred to as camless valvetrain, employs electronically controlled actuators to drive the intake and/or exhaust valves. This technology enables the engine controller to tailor the valve event according to the engine operating condition in real-time to improve fuel economy, emissions and performance. At GM Research and Development Center, we have developed laboratory electro-hydraulic FFVA systems for single cylinder gasoline engines. The objective of this work is to develop a FFVA system for advanced diesel combustion research. There are three major differences between gasoline and diesel engines in terms of applying the FFVA systems. First, the orientation of the diesel engine valves and the location of the fuel injection system complicate the packaging issue. Second, the clearance between the valves and the piston for diesel engines are extremely small.
Technical Paper

Development of the Hybrid System for the Saturn VUE Hybrid

2006-04-03
2006-01-1502
The hybrid system for the 2007 Model Year Saturn VUE Green Line Hybrid SUV was designed to provide the fuel economy of a compact sedan, while delivering improved acceleration performance over the base vehicle, and maintaining full vehicle utility. Key elements of the hybrid powertrain are a 2.4L DOHC engine with dual cam-phasers, a modified 4-speed automatic transmission, an electric motor-generator connected to the crankshaft through a bi-directional belt-drive system, power electronics to control the motor-generator, and a NiMH battery pack. The VUE's hybrid functionality includes: engine stop-start, regenerative braking, intelligent charge control of the hybrid battery, electric power assist, and electrically motored creep. Methods of improving urban and highway fuel economy via optimal use of the hybrid motor and battery, engine and transmission hardware and controls modifications, and vehicle enhancements, are discussed.
Technical Paper

Distributed Control System Development for FlexRay-based Systems

2005-04-11
2005-01-1279
FlexRay is a new communication subsystem for future in-vehicle controls. There is a lack of mature model-based development methodologies to build complex FlexRay-based systems. In this paper we describe an end-to-end model-based development process for building a complex FlexRay-based distributed control system. We describe this in the context of safety critical x-by-wire systems for a realistic automotive application. This involves: control system modeling, functional simulation, and distributed software development. We first describe the process of functional and physical architecture design. Next we discuss the software development process dealing with software to hardware allocation, as well as scheduling of software and communication tasks on a time-triggered communication bus under stringent practical restrictions. We conclude by considering the integration issues relating to joint OEM/supplier development of distributed control systems.
Technical Paper

Dual Catalytic Converters

1975-02-01
750176
The stringent 1978 emission standards of 0.41 gm/mi HC, 3.4 gm/mile CO, and 0.4 gm/mi NOx may require the use of a dual catalytic converter system (reducing and oxidizing catalyst). These emission requirements have been achieved at low mileage with such a system, but it is complex and has exhibited poor durability. This system also results in the loss of fuel economy at the 1978 emission levels.
Technical Paper

Dynamic Moving Mesh CFD Study of Semi-truck Passing a Stationary Vehicle with Hood Open

2007-04-16
2007-01-0111
This paper examines the aerodynamic forces on the open hood of a stationary vehicle when another large vehicle, such as an 18-wheel semi-truck, passes by at high speed. The problem of semi-truck passing a parked car with hood open is solved as a transient two-vehicle aerodynamics problem with a Dynamic Moving Mesh (DMM) capability in commercial CFD software package FLUENT. To assess the computational feasibility, a simplified compact car / semi-truck geometry and CFD meshes are used in the first trial example. At 70 mph semi-truck speed, the CFD results indicate a peak aerodynamic force level of 20N to 30N on the hood of the car, and the direction of the net forces and moments on the hood change multiple times during the passing event.
Journal Article

Exhaust Valve & Valve Seat Insert – Development for an Industrial LPG Application

2009-05-13
2009-01-1602
Automotive engines are regularly utilized in the material handling market where LPG is often the primary fuel used. When compared to gasoline, the use of gaseous fuels (LPG and CNG) as well as alcohol based fuels, often result in significant increases in valve seat insert (VSI) and valve face wear. This phenomenon is widely recognized and the engine manufacturer is tasked to identify and incorporate appropriate valvetrain material and design features that can meet the ever increasing life expectations of the end-user. Alternate materials are often developed based on laboratory testing – testing that may not represent real world usage. The ultimate goal of the product engineer is to utilize accelerated lab test procedures that can be correlated to field life and field failure mechanisms, and then select appropriate materials/design features that meet the targeted life requirements.
X