Refine Your Search

Topic

Author

Search Results

Technical Paper

1996 GM 7.4 Liter Engine Upgrade

1996-02-01
960012
General Motors Powertrain Division has developed the next generation big block V8 engine for introduction in the 1996 model year. In addition to meeting tighter emission and on-board diagnostic legislation, this engine evolved to meet both customer requirements and competitive challenges. Starting with the proven dependability of the time tested big block V8, goals were set to substantially increase the power, torque, fuel economy and overall pleaseability of GM's large load capacity gasoline engine. The need for this new engine to meet packaging requirements in many vehicle platforms, both truck and OEM, as well as a requirement for minimal additional heat rejection over the engine being replaced, placed additional constraints on the design.
Technical Paper

1997 GM 5.7 LITER LS1 V8 ENGINE

1997-02-24
970915
General Motors Powertrain Group (GMPTG) has developed an all new small block V8 engine, designated LS1, for introduction into the 1997 Corvette. This engine was designed to meet both customer requirements and competitive challenges while also meeting the ever increasing legislated requirements of emissions and fuel economy. This 5.7L V8 provides increased power and torque while delivering higher fuel economy. In addition, improvements in both QRD and NVH characteristics were made while meeting packaging constraints and achieving significant mass reductions.
Technical Paper

A New Method of Measuring Aeration and Deaeration of Fluids

2004-10-25
2004-01-2914
This paper describes the design and functionality of an in-situ air entrainment measuring device for analysis of the air entrainment and air release properties of lubricating fluids. The apparatus allows for a variety of measurement techniques for the aeration and deaeration of the lubricating fluid at various temperatures, pressures, and agitation speeds. This test apparatus is patent pending because of its unique ability to allow for continuous, in-situ measurement of the fluid properties and the rates of change of these properties. Most other measurement techniques and apparatuses do not allow for uninterrupted measurement. This apparatus is also unique in that it is capable of detecting minor fluid density changes at a lower level and with more accuracy than all other current techniques or apparatuses.
Technical Paper

A Simulation Model for the Saturn VUE Green Line Hybrid Vehicle

2006-04-03
2006-01-0441
In developing the 2007 Model Year Saturn VUE Green Line hybrid vehicle, a vehicle model for prediction of fuel economy and performance was developed. This model was developed in Matlab / Simulink / Stateflow by augmenting an existing conventional vehicle model to include hybrid components and controls. The generic structure and the functionalities of the model are presented. This simulation model was used for rapid concept selection and requirements balancing early in the vehicle development process. Engine usage and energy distributions are shown based on simulation results. Fuel economy breakdown was also discussed.
Technical Paper

Accelerated Glass Reveal Molding Test

1998-02-23
980718
Over the past 20 years, polyvinyl chloride (PVC) has almost replaced metal in stationary glass reveal moldings with dramatic part cost savings on cars and trucks world-wide. The process of assembly is generally simple and convenient but to replace a reveal molding can be difficult. Many times, in order to replace the molding, it may also be necessary to replace or reseal the glass. In short, PVC reveal moldings, relatively inexpensive parts, are very expensive to service. Outside of general assembly and processing issues, there are 5 variables that may cause a failure in the performance of a stationary glass reveal molding. They are as follows: material degradation, crystallization, plasticizer loss, material properties, and molded-in stress. Because of modern standard PVC formulations and the material requirements of most automotive companies, material degradation, crystallization and plasticizer loss do not commonly cause failure. Material properties and molded-in stress do.
Technical Paper

Accuracy of Total Hydrocarbon Analyzer Measurements Measurements in the SULEV Region

2003-03-03
2003-01-0388
The super-ultra-low-emission-vehicle (SULEV) non-methane organic gas (NMOG) hydrocarbon exhaust standard as legislated by the state of California LEV II regulations is 10 milligrams per mile. This requires that the associative instrumentation must be capable of accurately and precisely determining total hydrocarbons (THC) concentrations on the order of 10 parts per billion-carbon (ppbC) for vehicle tests run under optimum conditions on a bag mini-diluter (BMD) test site. The flame ionization detector (FID) is the standard instrument used in the measurement of THC. Currently, there are many instrument manufacturers that produce these types of analyzers. This paper studies the limit of detection and accuracy capabilities of one of these instruments, the Beckman 400A FID. In addition, the paper shows evidence that supports that this “state of technology” as described by this instrument, is sufficient to meet the demands of the today's most stringent, vehicle emission standards.
Technical Paper

Aggregating Technologies for Reduced Fuel Consumption: A Review of the Technical Content in the 2002 National Research Council Report on CAFE

2002-03-04
2002-01-0628
The National Research Council (NRC) recently published a report entitled “Effectiveness and Impact of Corporate Average Fuel Economy (CAFE) Standards” intended to help U.S. policymakers in the formulation of CAFE policy. In the Report, the NRC projects fuel consumption reductions from the application of a wide range of engine, transmission, and vehicle technologies. The Report employs a simple multiplicative method to aggregate the effects of multiple technologies on fuel consumption. In this paper, a basic energy balance calculation is used to examine the NRC results against theoretical limits. Theoretical limits are calculated using measured and simulated breakdowns of system energy losses incurred during vehicle operation on EPA driving cycles. This analysis demonstrates the inherently optimistic results produced by simple aggregation methodologies. Methods for enhancing the accuracy of the technology-aggregation process are proposed.
Technical Paper

An Investigation of Sample Bag Hydrocarbon Emissions and Carbon Dioxide Permeation Properties

2004-03-08
2004-01-0593
The equipment for collecting dilute exhaust samples involves the use of bag materials (i.e., Tedlar®) that emit hydrocarbons that contaminate samples. This study identifies a list of materials and treatments to produce bags that reduce contamination. Based on the average emission rates, baked Tedlar®, Capran® treated with alumina deposition, supercritical CO2 extracted Kynar® and supercritical CO2 extracted Teflon NXT are capable of achieving the target hydrocarbon emission rate of less than 15 ppbC per 30 minutes. CO2 permeation tests were also performed. Tedlar, Capran, Kynar and Teflon NXT showed comparable average permeation rates. Based on the criteria of HC emission performance, changes in measured CO2 concentration, ease of sealing, and ease of surface treatment, none of the four materials could be distinguished from one another.
Technical Paper

Anti-Shudder Property of Automatic Transmission Fluids - A Study by the International Lubricants Standardization and Approval Committee (ILSAC) ATF Subcommittee

2000-06-19
2000-01-1870
In recent years, the slip lock-up mechanism has been adopted widely, because of its fuel efficiency and its ability to improve NVH. This necessitates that the automatic transmission fluid (ATF) used in automatic transmissions with slip lock-up clutches requires anti-shudder performance characteristics. The test methods used to evaluate the anti-shudder performance of an ATF can be classified roughly into two types. One is specified to measure whether a μ-V slope of the ATF is positive or negative, the other is the evaluation of the shudder occurrence in the practical vehicle. The former are μ-V property tests from MERCON® V, ATF+4®, and JASO M349-98, the latter is the vehicle test from DEXRON®-III. Additionally, in the evaluation of the μ-V property, there are two tests using the modified SAE No.2 friction machine and the modified low velocity friction apparatus (LVFA).
Technical Paper

Application of Experimental Transfer Path Analysis and Hybrid FRF-Based Substructuring Model to SUV Axle Noise

2005-04-11
2005-01-1833
This paper describes an axle gear whine noise reduction process that was developed and applied using a combination of experimental and analytical methods. First, an experimental Transfer Path Analysis (TPA) was used to identify major noise paths. Next, modeling and forced response simulation were conducted using the Hybrid FEA-Experimental FRF method known as HYFEX [1]. The HYFEX model consisted of an experimental FRF representation of the frame/body and a finite element (FE) model of the driveline [2] and suspension. The FE driveline model was calibrated using experimental data. The HYFEX model was then used to simulate the axle noise reduction that would be obtained using a modified frame, prior to the availability of a prototype. Hardware testing was used as the final step in the process to confirm the results of the simulation.
Technical Paper

Bolt-load Retention Testing of Magnesium Alloys for Automotive Applications

2006-04-03
2006-01-0072
For automotive applications at elevated temperatures, the need for sufficient creep resistance of Mg alloys is often associated with retaining appropriate percentages of initial clamp loads in bolt joints. This engineering property is often referred to as bolt-load retention (BLR); BLR testing is a practical method to quantify the bolt load with time for engineering purposes. Therefore, standard BLR test procedures for automotive applications are desired. This report summarizes the effort in the Structural Cast Magnesium Development (SCMD) project under the United States Automotive Materials Partnership (USAMP), to provide a technical basis for recommending a general-purpose and a design-purpose BLR test procedures for BLR testing of Mg alloys for automotive applications. The summary includes results of factors influencing BLR and related test techniques from open literature, automotive industry and research carried out in this laboratory project.
Technical Paper

Bulkhead Loading Calculation of an Aluminum Engine Block Coupled with a Rotating Crankshaft through Elastohydrodynamic Bearings

2007-04-16
2007-01-0267
During a new engine development program, or the adaptation of an existing engine to new platform architectures, testing is performed to determine the durability characteristics of the basic engine structure. Such testing helps to uncover High Cycle durability-related issues that can occur at the bulkhead walls as well as cap bolt thread areas in an aluminum cylinder block. When this class of issues occurs, an Elastohydrodynamic (EHD) bearing simulation capability is required. In this study, analytical methods and processes are established to calculate the localized distributed load on the bulkhead. The complexity in performing a system analysis is due to the nonlinear coupling between the bearing hydrodynamic pressure distribution and the crankshaft and block deformation. A system approach for studying the crankshaft-block interaction requires a crankshaft flexible body dynamics model, an engine block assembly flexible body dynamics model and a main bearing lubrication model.
Journal Article

CVJ and Knuckle Design Optimization to Protect Inboard Wheel Bearing Seals from Splash

2016-09-18
2016-01-1956
For higher mileage vehicles, noise from contaminant ingress is one of the largest durability issues for wheel bearings. The mileage that wheel bearing sealing issues increase can vary due to multiple factors, such as the level of corrosion for the vehicle and the mating components around the wheel bearing. In general, sealing issues increase after 20,000 to 30,000 km. Protecting the seals from splash is a key step in extending bearing life. Benchmarking has shown a variety of different brake corner designs to protect the bearing from splash. This report examines the effect of factors from different designs, such as the radial gap between constant velocity joint (CVJ) slinger and the knuckle, knuckle labyrinth height and varying slinger designs to minimize the amount of splash to the bearing inboard seal. This report reviews some of the bearing seal failure modes caused by splash.
Technical Paper

Changing Inspection and Maintenance Requirements: … A Result of New Emission Control Technology

1979-02-01
790783
Amendments to the Clean Air Act require the implementation of inspection/maintenance (I/M) programs in areas designated as non-attainment and unable to meet the National Ambient Air Quality Standards by 1982. Current I/M programs have been developed using data representative of pre- and early-catalyst emission control technology. Changes to current emission control systems and electronic computer controlled systems represent new emission control technology. This paper addresses the I/M situation as related to these system changes. Results of tests on a prototype system are presented. Parameter inspection and the utilization of built-in diagnostics on future systems have the potential to maximize the effectiveness of I/M programs.
Technical Paper

Closed Loop Pressure Control System Development for an Automatic Transmission

2009-04-20
2009-01-0951
This paper presents the development of a transmission closed loop pressure control system. The objective of this system is to improve transmission pressure control accuracy by employing closed-loop technology. The control system design includes both feed forward and feedback control. The feed forward control algorithm continuously learns solenoid P-I characteristics. The closed loop feedback control has a conventional PID control with multi-level gain selections for each control channel, as well as different operating points. To further improve the system performance, Robust Optimization is carried out to determine the optimal set of control parameters and controller hardware design factors. The optimized design is verified via an L18 experiment on spin dynamometer. The design is also tested on vehicle.
Technical Paper

Combustion Characteristics of a Reverse-Tumble Wall-Controlled Direct-Injection Stratified-Charge Engine

2003-03-03
2003-01-0543
Experimentally obtained combustion responses of a typical reverse-tumble wall-controlled direct-injection stratified-charge engine to operating variables are described. During stratified-charge operation, the injection timing, ignition timing, air-fuel ratio, and levels of exhaust gas recirculation (EGR) generally determine the fuel economy and emissions performance of the engine. A detailed heat-release analysis of the experimental cylinder-pressure data was conducted. It was observed that injection and ignition timings determine the thermal efficiency of the engine by controlling primarily the combustion efficiency of the stratified charge. Hence, combustion phasing is determined by a compromise between work-conversion efficiency and combustion efficiency. To reduce nitric-oxide (NOx) emissions, a reduction in overall air-fuel ratio as well as EGR addition is required.
Technical Paper

Combustion Characteristics of a Spray-Guided Direct-Injection Stratified-Charge Engine with a High-Squish Piston

2005-04-11
2005-01-1937
This work describes an experimental investigation on the stratified combustion and engine-out emissions characteristics of a single-cylinder, spark-ignition, direct-injection, spray-guided engine employing an outward-opening injector, an optimized high-squish, bowled piston, and a variable swirl valve control. Experiments were performed using two different outward-opening injectors with 80° and 90° spray angles, each having a variable injector pintle-lift control allowing different rates of injection. The fuel consumption of the engine was found to improve with decreasing air-swirl motion, increasing spark-plug length, increasing spark energy, and decreasing effective rate of injection, but to be relatively insensitive to fuel-rail pressure in the range of 10-20 MPa. At optimal injection and ignition timings, no misfires were observed in 30,000 consecutive cycles.
Technical Paper

Compatibility Study of Fluorinated Elastomers in Automatic Transmission Fluids

2008-06-23
2008-01-1619
A compatibility study was conducted on fluorinated elastomers (FKM and FEPM) in various Automatic Transmission Fluids (ATF). Representative compounds from various FKM families were tested by three major FKM raw material producers - DuPont Performance Elastomers (DPE), Dyneon and Solvay. All involved FKM compounds were tested in a newly released fluid (ATF-A) side-by-side with conventional transmission fluids, at 150°C for various time intervals per ASTM D471. In order to evaluate the fluid compatibility limits, some FKM's were tested as long as 3024 hrs, which is beyond the normal service life of seals. Tensile strength and elongation were monitored as a function of ATF exposure time. The traditional dipolymers and terpolymers showed poor resistance to the new fluid (ATF-A). Both types demonstrated significant decreases in strength and elongation after extended fluid exposure at 150°C.
Technical Paper

Computing Transfer Functions from Mass Loaded Response of Structures

2004-03-08
2004-01-0780
This paper outlines a method for computing the transfer functions of structures using their mass loaded responses. According to the method, scaled transfer functions are computed from the response of a structure and without any knowledge of the input forces. The paper outlines the analytical approach, develops the necessary equations for the computation of transfer functions between a mass loading point and other points on a linear dynamic system. A numerical example to show the validity, advantages and limitations of the method is also provided. Currently, the method can be applied to the responses obtained from analytical simulations where it may be necessary to compute coupled response of a simulated dynamic system with other dynamic systems that are not (or cannot be) included in a simulation. It is not uncommon that many dynamic simulations exclude certain coupling effects between the main and the auxiliary systems.
Technical Paper

Concept and Implementation of a Robust HCCI Engine Controller

2009-04-20
2009-01-1131
General Motors recently demonstrated two driveable test vehicles powered by a Homogeneous Charge Compression Ignition (HCCI) engine. HCCI combustion has the potential of a significant fuel economy benefit with reduced after-treatment cost. However, the biggest challenge of realizing HCCI in vehicle applications is controlling the combustion process. Without a direct trigger mechanism for HCCI's flameless combustion, the in-cylinder mixture composition and temperature must be tightly controlled in order to achieve robust HCCI combustion. The control architecture and strategy that was implemented in the demo vehicles is presented in this paper. Both demo vehicles, one with automatic transmission and the other one with manual transmission, are powered by a 2.2-liter HCCI engine that features a central direct-injection system, variable valve lift on both intake and exhaust valves, dual electric camshaft phasers and individual cylinder pressure transducers.
X