Refine Your Search

Topic

Author

Search Results

Technical Paper

A Case Study on Airborne Road Noise Reduction of a Passenger Vehicle

2003-05-05
2003-01-1407
This paper presents a case study on reducing road noise of a passenger vehicle. SEA, insertion loss and sound intensity measurements were the tools used in the study. A SEA model was constructed to predict the primary paths (panels or area) contributing to the overall interior sound field. Insertion loss measurements were used to verify the primary contributing paths identified using SEA. To provide further details of the primary paths, intensity maps of identified panels were measured allowing detailed reconstruction of the contributory panels. The SEA model, insertion loss, and intensity maps aided in providing possible design fixes that will effectively reduce road noise. Finally, comparisons of predicted results versus actual results at both a subsystem and a full vehicle level are included in this paper.
Technical Paper

A Computer Model Based Sensitivity Analysis of Parameters of an Automotive Air Conditioning System

2004-03-08
2004-01-1564
The objective of this work is to perform a computer model based sensitivity analysis of parameters of an automotive air conditioning system to identify the critical parameters. Design of Experiment (DOE) and Analysis of Variance (ANOVA) techniques have been used to identify the critical parameters and their relative effects on the air conditioning system performance. The sensitivity analysis has been verified by running similar tests on an air conditioning system test stand (AC Test Stand).
Technical Paper

A DIGITAL COMPUTER SIMULATION FOR SPARK-IGNITED ENGINE CYCLES

1963-01-01
630076
A comprehensive cycle analysis has been developed for four-stroke spark-ignited engines from which the indicated performance of a single cylinder engine was computed with a reasonable degree of accuracy. The step-wise cycle calculations were made using a digital computer. This analysis took into account mixture composition, dissociation, combustion chamber shape (including spark plug location), flame propagation, heat transfer, piston motion, engine speed, spark advance, manifold pressure and temperature, and exhaust pressure. A correlation between the calculated and experimental performance is reported for one engine at a particular operating point. The calculated pressure-time diagram was in good agreement with the experimental one in many respects. The calculated peak pressure was 10 per cent lower and the thermal efficiency 0.8 per cent higher than the measured values. Thus this calculational procedure represents a significant improvement over constant volume cycle approximations.
Technical Paper

A Design Tool for Producing 3D Solid Models from Sketches

2004-03-08
2004-01-0482
A novel design tool that produces solid model geometry from computer-generated sketches was developed to dramatically increase the speed of component development. An understanding of component part break-up and section shape early in the design process can lead to earlier part design releases. The concept provides for a method to create 3-dimensional (3D) solid models from 2-dimensional (2D) digital image sketches. The traditional method of creating 3-dimensional surface models from sketches or images involves creation of typical sections and math surfaces by referencing the image only. There is no real use of the sketch within the math environment. An interior instrument panel and steering wheel is described as an example. The engineer begins with a 2-dimensional concept sketch or digital image. The sketch is scaled first by determining at least three known feature diameters.
Technical Paper

A Hybrid Method for Vehicle Axle Noise Simulation with Experimental Validation

2003-05-05
2003-01-1707
Recently, many authors have attempted to represent an automobile body in terms of experimentally derived frequency response functions (FRFs), and to couple the FRFs with a FEA model of chassis for performing a total system dynamic analysis. This method is called Hybrid FEA-Experimental FRF method, or briefly HYFEX. However, in cases where the chassis model does not include the bushing models, one can not directly connect the FRFs of the auto body to the chassis model for performing a total system dynamic analysis. In other cases when the chassis model includes the bushings, the bushing dynamic rates are modeled as constant stiffness rather than frequency dependent stiffness, the direct use of the HYFEX method will yield unsatisfactory results. This paper describes how the FRF's of the auto body and the frequency dependent stiffness data of the bushings can be combined with an appropriate mathematical formulation to better represent the dynamic characteristics of a full vehicle.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

A New Method of Measuring Aeration and Deaeration of Fluids

2004-10-25
2004-01-2914
This paper describes the design and functionality of an in-situ air entrainment measuring device for analysis of the air entrainment and air release properties of lubricating fluids. The apparatus allows for a variety of measurement techniques for the aeration and deaeration of the lubricating fluid at various temperatures, pressures, and agitation speeds. This test apparatus is patent pending because of its unique ability to allow for continuous, in-situ measurement of the fluid properties and the rates of change of these properties. Most other measurement techniques and apparatuses do not allow for uninterrupted measurement. This apparatus is also unique in that it is capable of detecting minor fluid density changes at a lower level and with more accuracy than all other current techniques or apparatuses.
Technical Paper

A Novel Design Concept of a Lateral Sliding Bucket Seat on Roller Mechanisms

2003-10-27
2003-01-2753
A novel lateral sliding vehicle bucket seat was developed to address consumer needs for improved facile access to third row seats in minivans and sport utility vehicles. The concept provides for a second row bucket seat to slide laterally across a vehicle floor by roller mechanisms that roll across steel rails that transverse the vehicle floor. The system consists of two T-section type steel rails mounted parallel to each other at a distance equal to the seat riser support attachment features. The seat risers contain a roller mechanism that enables contact with the cylindrical portion of the steel rails. Each steel rail contains rectangular openings spaced appropriately to allow the seat latching mechanisms to engage securely. The seat riser supports at the rear include a releasable clamping mechanism hook that engages and disengages into the rectangular openings of the steel rails.
Technical Paper

A Semi-Empirical Model for Fast Residual Gas Fraction Estimation in Gasoline Engines

2006-10-16
2006-01-3236
Accurate accounting for fresh charge (fuel and air) along with trapped RGF is essential for the subsequent thermodynamic analysis of combustion in gasoline engines as well as for on-line and real-time quantification as relevant to engine calibration and control. Cost and complexity of such techniques renders direct measurement of RGF impractical for running engines. In this paper, an empirically-based approach is proposed for on-line RGF, based on an existing semi-empirical model [1]. The model developed expands the range over which the semi-empirical model is valid and further improves its accuracy. The model was rigorously validated against a well correlated GT-POWER model as well as results from 1D gas exchange model [2]. Overall, using this model, RGF estimation error was within ∼1.5% for a wide range of engine operating conditions. The model will be implemented in Dyno development and calibration at Chrysler Group.
Technical Paper

A Subsystem Crash Test Methodology for Retention of Convenience Organizer Equipment System in Rear Impact

2005-04-11
2005-01-0735
Any equipment system or vehicle component like the Convenience Organizer storage system needs to be retained within the cargo compartment without intruding into the passenger compartment for occupant safety during a high speed impact. This paper outlines a test method to evaluate the retention of such a system in a rear impact environment. The method utilizes a low speed barrier to simulate a high speed RMB (Rear Moving Barrier) impact. The content of the low speed RMB impact test setup was developed utilizing DYNA3D analytical simulation results from a full vehicle model subjected to high-speed RMB impact. The retention of the equipment developed through this test method was confirmed on a full scale rear impact test.
Technical Paper

AWD Driveline Isolation In SUV Vehicle

2005-05-16
2005-01-2287
The popularity of AWD passenger vehicles presents a challenge to provide car-like drive-train NVH within a relatively small package space. This paper describes a drive-train NVH case study in which analysis and test were used, in conjunction, to solve an NVH problem. Also, it details a systematic process of using the analytical model to identify and resolve similar problems. The particular problem for this case study is a noise and vibration issue occurring at 75 MPH primarily in the middle seat of an all-wheel drive vehicle. Tests indicated that it may be due to propeller shaft imbalance. Analysis results showed good correlation with the tests for that loading condition. Several solutions were identified, which were confirmed by both test and analysis. The most cost-effective of these solutions was implemented.
Technical Paper

Acoustical Advantages of a New Polypropylene Absorbing Material

1999-05-17
1999-01-1669
Sound absorption is one way to control noise in automotive passenger compartments. Fibrous or porous materials absorb sound in a cavity by dissipating energy associated with a propagating sound wave. The objective of this study was to evaluate the acoustic performance of a cotton fiber absorbing material in comparison to a new polypropylene fibrous material, called ECOSORB ®. The acoustical evaluation was done using measurements of material properties along with sound pressure level from road testing of a fully-assembled vehicle. The new polypropylene fibrous material showed significant advantages over the cotton fiber materials in material properties testing and also in-vehicle measurements. In addition to the performance benefits, the polypropylene absorber provided weight savings over the cotton fiber material.
Technical Paper

Aeroacoustics of an Automobile A-Pillar Rain Gutter: Computational and Experimental Study

1999-03-01
1999-01-1128
Noise due to the flow over an automobile A-pillar rain gutter in isolation was computed using a two step procedure. Initially the flow solution was obtained by solving the Reynolds Averaged Navier Stokes (RANS) equations. Acoustical Sources were extracted from the flow solution and propagated to the far-field using the Lighthill-Curle equation. Experiments were conducted to evaluate the computations. Compared results include steady pressures, time dependent pressures, and sound intensity levels. Computed results and experimental data were reduced in a similar way to ensure a one to one comparison. Computed results are in good agreement with the experimental values. A-weighted noise levels are predicted reasonably well.
Technical Paper

Air Bag Loading on In-Position Hybrid III Dummy Neck

2001-03-05
2001-01-0179
The Hybrid III family of dummies is used to estimate the response of an occupant during a crash. One recent area of interest is the response of the neck during air bag loading. The biomechanical response of the Hybrid III dummy's neck was based on inertial loading during crash events, when the dummy is restrained by a seat belt and/or seat back. Contact loading resulting from an air bag was not considered when the Hybrid III dummy was designed. This paper considers the effect of air bag loading on the 5th percentile female Hybrid III dummies. The response of the neck is presented in comparison to currently accepted biomechanical corridors. The Hybrid III dummy neck was designed with primary emphasis on appropriate flexion and extension responses using the corridors proposed by Mertz and Patrick. They formulated the mechanical performance requirements of the neck as the relationship between the moment at the occipital condyles and the rotation of the head relative to the torso.
Technical Paper

An Efficient Procedure for Vehicle Thermal Protection Development

2005-04-11
2005-01-1904
Vehicle thermal protection is an important aspect of the overall vehicle development process. It involves optimizing the exhaust system routing and designing heat shields to protect various components that are in near proximity to the exhaust system. Reduced time to market necessitates an efficient process for thermal protection development. A robust procedure that utilizes state of the art CFD simulation techniques proactively during the design phase is described. Simulation allows for early detection of thermal issues and development of countermeasures several months before prototype vehicles are built. Physical testing is only used to verify the thermal protection package rather than to develop heat shields. The new procedure reduces the number of physical tests and results in a robust, efficient methodology.
Technical Paper

An Engineering Method for Part-load Engine Simulation

2007-10-29
2007-01-4102
This work provides an effective engineering method of building a part-load engine simulation model from a wide-open throttle (WOT) engine model and available dynamometer data. It shows how to perform part-load engine simulation using optimizer for targeted manifold absolute air pressure (MAP) on a basic matrix of engine speed and MAP. Key combustion parameters were estimated to cover the entire part-load region based on affordable assumptions and limitations. Engine rubbing friction and pumping friction were combined to compare against the motoring torque. The emission data from GM dynamometer laboratory were used to compare against engine simulation results after attaching the RLT sensor to record emission data in the engine simulation model.
Technical Paper

An Experimental Study on the Effect of Intake Primary Runner Blockages on Combustion and Emissions in SI Engines under Part-Load Conditions

2004-10-25
2004-01-2973
Charge motion is known to accelerate and stabilize combustion through its influence on turbulence intensity and flame propagation. The present work investigates the effect of charge motion generated by intake runner blockages on combustion characteristics and emissions under part-load conditions in SI engines. Firing experiments have been conducted on a DaimlerChrysler (DC) 2.4L 4-valve I4 engine, with spark range extending around the Maximum Brake Torque (MBT) timing. Three blockages with 20% open area are compared to the fully open baseline case under two operating conditions: 2.41 bar brake mean effective pressure (bmep) at 1600 rpm, and 0.78 bar bmep at 1200 rpm. The blocked areas are shaped to create different levels of swirl, tumble, and cross-tumble. Crank-angle resolved pressures have been acquired, including cylinders 1 and 4, intake runners 1 and 4 upstream and downstream of the blockage, and exhaust runners 1 and 4.
Technical Paper

Application of Elastomeric Components for Noise and Vibration Isolation in the Automotive Industry

2001-04-30
2001-01-1447
Elastomeric isolators are used in a variety of different applications to reduce noise and vibration. To use isolators effectively requires the product design and development engineer to satisfy multiple objectives, which typically include packaging restrictions, environmental criteria, limitations on motion control, load requirements, and minimum fatigue life, in addition to vibration isolation performance. An understanding of elastomeric material properties and the methods used to characterize elastomeric component behavior is necessary to achieve desired performance. Typical design criteria and functional objectives for various isolator applications, including powertrain mounts, suspension control arm bushings, shock absorber bushings, exhaust hangers, flexible couplings, cradle mounts, body mounts and vibration dampers are also discussed.
Technical Paper

Application of Experimental Transfer Path Analysis and Hybrid FRF-Based Substructuring Model to SUV Axle Noise

2005-04-11
2005-01-1833
This paper describes an axle gear whine noise reduction process that was developed and applied using a combination of experimental and analytical methods. First, an experimental Transfer Path Analysis (TPA) was used to identify major noise paths. Next, modeling and forced response simulation were conducted using the Hybrid FEA-Experimental FRF method known as HYFEX [1]. The HYFEX model consisted of an experimental FRF representation of the frame/body and a finite element (FE) model of the driveline [2] and suspension. The FE driveline model was calibrated using experimental data. The HYFEX model was then used to simulate the axle noise reduction that would be obtained using a modified frame, prior to the availability of a prototype. Hardware testing was used as the final step in the process to confirm the results of the simulation.
Technical Paper

Application of Principle Component Analysis to Low Speed Rear Impact - Design for Six Sigma Project at General Motors

2009-04-20
2009-01-1204
This study involves an application of Principal Component Analysis (PCA) conducted in support of a Design for Six Sigma (DFSS) project. Primary focus of the project is to optimize seat parameters that influence Low Speed Rear Impact (LSRI) whiplash performance. During the DFSS study, the project team identified a need to rank order critical design factors statistically and establish their contribution to LSRI performance. It is also required to develop a transfer function for the LSRI rating in terms of test response parameters that can be used for optimization. This statistical approach resulted in a reliable transfer function that can applied across all seat designs and enabled us to separate vital few parameters from several many.
X