Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Application of a Mechanism-Based Short Crack Growth Model for the Fatigue Analysis of an Engine Cylinder Block Including Low-Frequency Thermal and High-Frequency Dynamic Loading

2023-04-11
2023-01-0595
Cast aluminum cylinder blocks are frequently used in gasoline and diesel internal combustion engines because of their light-weight advantage. However, the disadvantage of aluminum alloys is their relatively low strength and fatigue resistance which make aluminum blocks prone to fatigue cracking. Engine blocks must withstand a combination of low-cycle fatigue (LCF) thermal loads and high-cycle fatigue (HCF) combustion and dynamic loads. Reliable computational methods are needed that allow for accurate fatigue assessment of cylinder blocks under this combined loading. In several publications, the mechanism-based thermomechanical fatigue (TMF) damage model DTMF describing the growth of short fatigue cracks has been extended to include the effect of both LCF thermal loads and superimposed HCF loadings. This approach is applied to the finite life fatigue assessment of an aluminum cylinder block. The required material properties related to LCF are determined from uniaxial LCF tests.
Technical Paper

Constitutive Modeling and Thermomechanical Fatigue Life Predictions of A356-T6 Aluminum Cylinder Heads Considering Ageing Effects

2019-04-02
2019-01-0534
Cast aluminum alloys are frequently used as materials for cylinder head applications in internal combustion gasoline engines. These components must withstand severe cyclic mechanical and thermal loads throughout their lifetime. Reliable computational methods allow for accurate estimation of stresses, strains, and temperature fields and lead to more realistic Thermomechanical Fatigue (TMF) lifetime predictions. With accurate numerical methods, the components could be optimized via computer simulations and the number of required bench tests could be reduced significantly. These types of alloys are normally optimized for peak hardness from a quenched state that maximizes the strength of the material. However due to high temperature exposure, in service or under test conditions, the material would experience an over-ageing effect that leads to a significant reduction in the strength of the material.
Journal Article

Downsized-Boosted Gasoline Engine with Exhaust Compound and Dilute Advanced Combustion

2020-04-14
2020-01-0795
This article presents experimental results obtained with a disruptive engine platform, designed to maximize the engine efficiency through a synergetic implementation of downsizing, high compression-ratio, and importantly exhaust-heat energy recovery in conjunction with advanced lean/dilute low-temperature type combustion. The engine architecture is a supercharged high-power output, 1.1-liter engine with two-firing cylinders and a high compression ratio of 13.5: 1. The integrated exhaust heat recovery system is an additional, larger displacement, non-fueled cylinder into which the exhaust gas from the two firing cylinders is alternately transferred to be further expanded. The main goal of this work is to implement in this engine, advanced lean/dilute low-temperature combustion for low-NOx and high efficiency operation, and to address the transition between the different operating modes.
Technical Paper

Effect of Different Magnesium Powertrain Alloys on the High Pressure Die Casting Characteristics of an Automatic Transmission Case

2010-04-12
2010-01-0409
The main objective of this paper is to demonstrate how flow and solidification simulation were used in the development of a new gating system design for three different magnesium alloys; and to determine the relative castability of each alloy based on casting trials. Prototype tooling for an existing 3-slide rear wheel drive automatic transmission case designed for aluminum A380 was provided by General Motors. Flow and solidification simulation were performed using Magmasoft on the existing runner system design using A380 (baseline), AE44, MRI153M and MRI230D. Based on the filling results, new designs were developed at Meridian for the magnesium alloys. Subsequent modeling was performed to verify the new design and the changes were incorporated into the prototype tool. Casting trials were conducted with the three magnesium alloys and the relative castability was evaluated.
Technical Paper

Impact of Fuel Detergent Type and Concentration on the Rate and Severity of Stochastic Preignition in a Turbocharged Spark Ignition Direct Injection Gasoline Engine

2021-04-06
2021-01-0490
Stochastic Preignition (SPI) is an abnormal combustion event that occurs in a turbocharged engine and can lead to the loss in fuel economy and engine hardware damage, and in turn result in customer dissatisfaction. It is a significant limiting factor on the use and continued downsizing of turbocharged spark ignited direct injection (SIDI) gasoline engines. Understanding and mitigating all the factors that cause and influence the rate and severity of SPI occurrence are of critical importance to the engine’s continued use and fuel economy improvements for future designs. Previous studies have shown that the heavy molecular weight components of the fuel formulations are one factor that influences the rate of SPI from a turbocharged SIDI gasoline engine. All the previous studies have involved analyzing the fuel’s petroleum hydrocarbon chemistry, but not specifically the additives that are put in the fuel to protect and clean the internal components over the life of the engine.
Journal Article

Lean-Stratified Combustion System with Miller Cycle for Downsized Boosted Application - Part 2

2021-04-06
2021-01-0457
Automotive manufacturers relentlessly explore engine technology combinations to achieve reduced fuel consumption under continued regulatory, societal and economic pressures. For example, technologies enabling advanced combustion modes, increased expansion to effective compression ratio and reduced parasitics continue to be developed and integrated within conventional and hybrid propulsion strategies across the industry. A high-efficiency gasoline engine capable for use in conventional or hybrid electric vehicle platforms is highly desirable. This paper is the second of two papers describing the multi-cylinder integration of a technology package combining lean-stratified combustion with Miller cycle for downsized boosted applications. The first paper describes the design, analysis and single-cylinder testing conducted to down-select the combustion system deployed to the multi-cylinder engine.
Journal Article

Lean-Stratified Combustion System with Miller Cycle for Downsized Boosted Application - Part I

2021-04-06
2021-01-0458
Automotive manufacturers relentlessly explore engine technology combinations to achieve reduced fuel consumption under continued regulatory, societal and economic pressures. For example, technologies enabling advanced combustion modes, increased expansion to effective compression ratio, and reduced parasitics continue to be developed and integrated within conventional and hybrid propulsion strategies across the industry. A high-efficiency gasoline engine capable for use in conventional or hybrid electric vehicle platforms is highly desirable. This paper is the first to two papers describing the development of a combustion system combining lean-stratified combustion with Miller cycle for downsized boosted applications. The work was completed under a multi-year US DOE project. The goal was to define a light-duty engine package capable of achieving a 35% fuel economy improvement at US Tier 3 emission standards over a naturally aspirated stoichiometric baseline vehicle.
Technical Paper

Learning Gasoline Direct Injector Dynamics Using Artificial Neural Networks

2018-04-03
2018-01-0863
In today’s race for improved fuel economy and lower emissions from gasoline engines, precise metering of delivered fuel is essential. Gasoline Direct Injection fuel systems provide the means for improved combustion efficiency through mixture preparation and better atomization. These improvements can be achieved from both increasing fuel pressure and using multiple injection events, which significantly reduce the required energizing time per injection, and in a number of cases, force the injector to operate at less than full stroke. When the injector operates in this condition, the influence of variation in injector dynamics account for a large percentage of the delivered fuel and require compensation to ensure accurate fuel delivery. Injector dynamics such as opening delay and closing time are influenced by operating conditions such as fuel pressure, energizing time, and temperature.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Technical Paper

Robust Adaptive Control for Dual Fuel Injection Systems in Gasoline Engines

2024-04-09
2024-01-2841
The paper presents a robust adaptive control technique for precise regulation of a port fuel injection + direct injection (PFI+DI) system, a dual fuel injection configuration adopted in modern gasoline engines to boost performance, fuel efficiency, and emission reduction. Addressing parametric uncertainties on the actuators, inherent in complex fuel injection systems, the proposed approach utilizes an indirect model reference adaptive control scheme. To accommodate the increased control complexity in PFI+DI and the presence of additional uncertainties, a nonlinear plant model is employed, incorporating dynamics of the exhaust burned gas fraction. The primary objective is to optimize engine performance while minimizing fuel consumption and emissions in the presence of uncertainties. Stability and tracking performance of the adaptive controller are evaluated to ensure safe and reliable system operation under various conditions.
Technical Paper

Thermomechanical Fatigue Life Predictions of Cast Aluminum Cylinder Heads Considering Defect Distribution

2023-04-11
2023-01-0594
Semi-Permanent Mold (SPM) cast aluminum alloy cylinder heads are commonly used in gasoline and diesel internal combustion engines. The cast aluminum cylinder heads must withstand severe cyclic mechanical and thermal loads throughout their lifetime. The casting process is inherently prone to introducing casting defects and microstructural heterogeneity. Porosity, which is one of the most dominant volumetric defects in such castings, has a significant detrimental effect on the fatigue life of these components since it acts as a crack initiation site. A reliable analytical model for Thermo-Mechanical Fatigue (TMF) life prediction must take into account the presence of these defects. In previous publications, it has been shown that the mechanism-based TMF damage model (DTMF) is able to predict with good accuracy crack locations and the number of cycles to propagate an initial defect into a critical crack size in aluminum cylinder heads considering ageing effects.
Technical Paper

Update on Gasoline Fuel Property and Gasoline Additives Impacts on Stochastic Preignition with Review of Global Market Gasoline Quality

2022-08-30
2022-01-1071
Stochastic Preignition (SPI) is an abnormal combustion phenomenon for internal combustion engines (ICE), which has been a significant impact to automotive companies developing high efficiency, turbocharged, direct fuel injection, spark ignited engines. It is becoming clearer what fuel properties are related to the cause of SPI, whether directly with fuel preparation in the cylinder, or mechanisms related to the deposit build-up which contributes to initial and follow-on SPI events. The purpose of this paper is to provide a summary of global market gasoline fuel properties with special attention given to properties and specific compounds from the fuel and fuel additives that can contribute to SPI and the deposit build-up in engines. Based on a review of the global fuel quality, it appears that the fuel quality has not caught up to meet the technology requirements for fuel economy from modern technology engines.
X