Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A New Predictive Vehicle Particulate Emissions Index Based on Gasoline Simulated Distillation

2022-03-29
2022-01-0489
Fuel chemistry plays a crucial role in the continued reduction of particulate emissions (PE) and cleaner air quality from vehicles and equipment powered by internal combustion engines (ICE). Over the past ten years, there have been great improvements in predictive particulate emissions indices (correlative mathematical models) based on the fuel’s composition. Examples of these particulate indices (PI) are the Honda Particulate Matter Index (PMI) and the General Motors Particulate Evaluation Index (PEI). However, the analytical chemistry lab methods used to generate data for these two PI indices are very time-consuming. Because gasoline can be mixtures of hundreds of hydrocarbon compounds, these lab methods typically include the use of the high resolution chromatographic separation techniques such as detailed hydrocarbon analysis (DHA), with 100m chromatography columns and long (3 - 4 hours) analysis times per sample.
Technical Paper

Effects of Oxygenates and Aromatics in Gasoline on Vehicle Particulate Emissions

2021-04-06
2021-01-0542
There have been tremendous improvements in China fuel quality in recent years in conjunction with newly implemented vehicle emissions standards to combat air pollution. The focus of concern is particulate emissions from gasoline engines especially from high volume gasoline direct inject (GDI) engines, therefore the China 6 (GB 18351.6-2016) emission standard introduces strict PM/PN requirements. Because the fuel and vehicle are an integrated system, the composition of gasoline is one of the factors affecting PM/PN emissions. Ethanol and aromatics are widely used as octane boosters, changing the composition of China’s gasoline pool. In this study, two gasoline oxygenates, ethanol and methyl tert-butyl ether (MTBE), and heavy aromatic hydrocarbons were studied in vehicles with a GDI engines. Vehicle tests were performed on the Worldwide Harmonized Light Vehicles Test Cycle (WLTC).
Technical Paper

Update on Gasoline Fuel Property and Gasoline Additives Impacts on Stochastic Preignition with Review of Global Market Gasoline Quality

2022-08-30
2022-01-1071
Stochastic Preignition (SPI) is an abnormal combustion phenomenon for internal combustion engines (ICE), which has been a significant impact to automotive companies developing high efficiency, turbocharged, direct fuel injection, spark ignited engines. It is becoming clearer what fuel properties are related to the cause of SPI, whether directly with fuel preparation in the cylinder, or mechanisms related to the deposit build-up which contributes to initial and follow-on SPI events. The purpose of this paper is to provide a summary of global market gasoline fuel properties with special attention given to properties and specific compounds from the fuel and fuel additives that can contribute to SPI and the deposit build-up in engines. Based on a review of the global fuel quality, it appears that the fuel quality has not caught up to meet the technology requirements for fuel economy from modern technology engines.
X