Refine Your Search

Topic

Author

Search Results

Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

A Solution for a Fail-Operational Control of Steer-by-Wire System without Mechanical Backup Connection

2021-04-06
2021-01-0931
The past five years have seen significant research into autonomous vehicles that employ a by-wire steering rack actuator and no steering wheel. There is a clear synergy between these advancements and the parallel development of complete Steer-by-Wire systems for human-operated passenger vehicle applications. Steer-by-Wire architectures presented thus far in the literature require multiple layers of electrical and/or mechanical redundancy to achieve the safety goals. Unfortunately, this level of redundancy makes it difficult to simultaneously achieve three key manufacturer imperatives: safety, reliability, and cost. Hindered by these challenges, as of 2020 only one production car platform employs a Steer-by-Wire system. This paper presents a Steer-by-Wire architectural solution featuring fail-operational steering control architected with the objective of achieving all system safety, reliability, and cost goals.
Technical Paper

A Structural Stress Recovery Procedure for Fatigue Life Assessment of Welded Structures

2017-03-28
2017-01-0343
Over the decades, several attempts have been made to develop new fatigue analysis methods for welded joints since most of the incidents in automotive structures are joints related. Therefore, a reliable and effective fatigue damage parameter is needed to properly predict the failure location and fatigue life of these welded structures to reduce the hardware testing, time, and the associated cost. The nodal force-based structural stress approach is becoming widely used in fatigue life assessment of welded structures. In this paper, a new nodal force-based structural stress recovery procedure is proposed that uses the least squares method to linearly smooth the stresses in elements along the weld line. Weight function is introduced to give flexibility in choosing different weighting schemes between elements. Two typical weighting schemes are discussed and compared.
Technical Paper

Characterization of Embedded Debris Particles on Crankshaft Bearings

2024-04-09
2024-01-2594
Crankshaft bearings function to maintain the lubrication oil films needed to support crankshaft journals in hydrodynamic regime of rotation. Discontinuous oil films will cause the journal-bearing couple to be in a mixed or boundary lubrication condition, or even a bearing seizure or a spun bearing. This condition may further force the crankshaft to break and an engine shutdown. Spun bearings have been identified to be one of the top reasons in field returned engines. Excessive investigations have found large, embedded hard debris particles on the bearings are inevitably the culprit of destroying continuity of the oil films. Those particles, in particular the suspicious steel residues, in the sizes of hundreds of micrometers, are large enough to cause oil film to break, but rather fine and challenging for materials engineers to characterize their metallurgical features. This article presents the methodology and steps of debris analyses on bearings at different stages of engine build.
Technical Paper

Combustion Timing Control Based on First Modal Coefficients of Individual Cylinder Pressure Traces

2024-04-09
2024-01-2842
When an SI engine is equipped with individual cylinder pressure transducers, combustion timing of each cylinder can be precisely controlled by adjusting spark timing in real-time. In this paper, a novel method based on principal component analysis (PCA) is introduced to control the combustion timing with a significantly less computational burden than a conventional method.
Technical Paper

Comparison of Stochastic Pre-Ignition Behaviors on a Turbocharged Gasoline Engine with Various Fuels and Lubricants

2016-10-17
2016-01-2291
Stochastic pre-ignition (SPI) has been commonly observed in turbocharged spark-ignition direct-injection (SIDI) engines at low-speed and high-load conditions, which causes extremely high cylinder pressures that can damage an engine immediately or degrade the engine life. The compositions and properties of fuels and lubricants have shown a strong impact on SPI frequency. This study experimentally evaluated SPI behaviors on a 2.0-liter 4-cylinder turbocharged SIDI engine with China V market fuel and China fuel blended to US Tier II fuel specifications. China V market fuel showed significantly higher SPI frequency and severity than China blended US Tier II fuel, which was attributed to its lower volatility between 100 °C to 150 °C (or lower T60 to T90 in the distillation curve). Two different formulations of lubricant oils were also tested and their impact on SPI were compared.
Technical Paper

Defining In-Vehicle Location and Functional Attributes of a ‘Button-Style Electronic Automatic Transmission Shifter’ Using DFSS Methodology with Customer Clinic Approach

2017-03-28
2017-01-1131
The implementation of electronic shifters (e-shifter) for automatic transmissions in vehicles has created many new opportunities for the customer facing transmission interface and in-vehicle packaging. E-shifters have become popular in recent years as their smaller physical size leads to packaging advantages, they reduce the mass of the automatic transmission shift system, they are easier to install during vehicle assembly, and act as an enabler for autonomous driving. A button-style e-shifter has the ability to create a unique customer interface to the automatic transmission, as it is very different from the conventional column lever or linear console shifter. In addition to this, a button-style e-shifter can free the center console of valuable package space for other customer-facing functions, such as storage bins and Human-Machine Interface controllers.
Journal Article

Detailed Analyses and Correlation of Fuel Effects on Stochastic Preignition

2020-04-14
2020-01-0612
Stochastic or Low-Speed Preignition (SPI or LSPI) is an undesirable abnormal combustion phenomenon encountered in spark-ignition engines. It is characterized by very early heat release and high cylinder pressure and can cause knock, noise and ultimately engine damage. Much of the focus on mitigating SPI has been directed towards the engine oil formulation, leading to the emergence of the Sequence IX test and second-generation GM dexos® oil requirements. Engine design, calibration and fuels also contribute to the prevalence of SPI. As part of a recently completed research consortium, a series of engine tests were completed to determine the impact of fuel composition on SPI frequency. The fuel blends had varying levels of paraffins, olefins, aromatics and ethanol.
Technical Paper

Distortion Reduction in Roller Offset Forming Using Geometrical Optimization

2024-04-09
2024-01-2857
Roller offsetting is an incremental forming technique used to generate offset stiffening or mating features in sheet metal parts. Compared to die forming, roller offsetting utilizes generic tooling to create versatile designs at a relatively lower forming speed, making it well-suited for low volume productions in automotive and other industries. However, more significant distortion can be generated from roller offset forming process resulting from springback after forming. In this work, we use particle swarm optimization to identify the tool path and resulting feature geometry that minimizes distortion. In our approach, time-dependent finite element simulations are adopted to predict the distortion of each candidate tool path using a quarter symmetry model of the part. A multi-objective fitness function is used to both minimize the distortion measure while constraining the minimal radius of curvature in the tool path.
Journal Article

Downsized Boosted Dilute Combustion, Exhaust Compounded (DBDC+EC) Experimental Engine Design, Thermodynamic Model Comparison, and Performance Potential Predictions

2021-04-06
2021-01-0443
An experimental piston compounded engine was designed with guidance from thermodynamic modeling, then was built and tested to compare the model predictions to measured results. The piston-compounded concept has shown great potential for improvements in efficiency over current state-of-the-art light-duty engines through the use of an efficient second expansion process to more fully recover energy still present in the exhaust gasses, and was further developed into the Downsized Boosted Dilute Combustion, Exhaust Compounded (DBDC+EC) engine presented here. This paper documents some of the more unique design elements of this engine as well as a performance comparison between test data and modeling expectations. Ultimately, an experimental stoichiometric spark-ignited piston compounded engine was designed, five blocks were built, and collectively they were run for thousands of hours.
Journal Article

Downsized-Boosted Gasoline Engine with Exhaust Compound and Dilute Advanced Combustion

2020-04-14
2020-01-0795
This article presents experimental results obtained with a disruptive engine platform, designed to maximize the engine efficiency through a synergetic implementation of downsizing, high compression-ratio, and importantly exhaust-heat energy recovery in conjunction with advanced lean/dilute low-temperature type combustion. The engine architecture is a supercharged high-power output, 1.1-liter engine with two-firing cylinders and a high compression ratio of 13.5: 1. The integrated exhaust heat recovery system is an additional, larger displacement, non-fueled cylinder into which the exhaust gas from the two firing cylinders is alternately transferred to be further expanded. The main goal of this work is to implement in this engine, advanced lean/dilute low-temperature combustion for low-NOx and high efficiency operation, and to address the transition between the different operating modes.
Technical Paper

Edge-Quality Effects on Mechanical Properties of Stamped Non-Oriented Electrical Steel

2020-04-14
2020-01-1072
The market for electric vehicles and hybrid electric vehicles is expected to grow in the coming years, which is increasing interest in design optimization of electric motors for automotive applications. Under demanding duty cycles, the moving part within a motor, the rotor, may experience varying stresses induced by centrifugal force, a necessary condition for fatigue. Rotors contain hundreds of electrical steel laminations produced by stamping, which creates a characteristic edge structure comprising rollover, shear and tear zones, plus a burr. Fatigue properties are commonly reported with specimens having polished edges. Since surface condition is known to affect fatigue strength, an experiment was conducted to evaluate the effect of sample preparation on tensile and fatigue behavior of stamped specimens. Tensile properties were unaffected by polishing. In contrast, polishing was shown to increase fatigue strength by approximately 10-20% in the range of 105-107 cycles to failure.
Technical Paper

Electric Motor Noise Reduction with Stator Mounted NVH Insert Ring

2024-04-09
2024-01-2205
Electric motor noise mitigation is a challenge in electric vehicles (EVs) due to the lack of engine masking noise. The design of the electric motor mounting configuration to the motor housing has significant impacts on the radiated noise of the drive unit. The stator can be bolted or interference-fit with the housing. A bolted stator creates motor whine and vibration excited by the motor torque ripple at certain torsional resonance frequencies. A stator with interference fit configuration stiffens the motor housing and pushes resonances to a higher frequency range, where masking noise levels are higher at faster vehicle speeds. However, this comes with additional cost and manufacturing process and may impact motor efficiency due to high stress on stators. In this paper, a thin sheet metal NVH ring is developed as a tunable stiffness device between the stator and the motor housing. It is pre-compressed and provides additional torsional rigidity to mitigate torsional excitations.
Journal Article

Evaluation of High Resistance Connection in Automotive Application

2020-04-14
2020-01-0926
Electrical connections have a normal operational temperature range. A high resistance, such as a poor connection, in an electrical circuit has been reported to cause a temperature increase exceeding normal operational range at the connection. This study measures the temperature increase in a typical automotive bolted battery cable connection with low to zero torque values and simulated high resistance under different load conditions. The torque is changed from maximum design value to 0 Nm and the temperature increase at the connection is measured. The high resistance connections, manually created by adjusting the contacts, are tested for several power loss values at the connection. The temperature rise under these conditions at the connection is measured and subsequently recorded. The maximum temperature increase at the bolted cable connection recorded at low torque values including 0 Nm torque compared to the maximum typical design value of 17 Nm is 10.5 °C.
Technical Paper

Evaluation of Neat Methanol as Fuel for a Light-Duty Compression Ignition Engine

2023-08-28
2023-24-0047
Methanol is currently being evaluated as a promising alternative fuel for internal combustion engines, due to being attainable by carbon neutral or negative pathways (renewable energy and carbon capture technology). The low ignitability of methanol has made it attractive mostly as a fuel for spark ignition engines, however the low sooting properties of the fuel could potentially reduce the NOx-soot tradeoff present in compression ignition engines. In this work, using a 4-cylinder engine with compression ratio modified from 16:1 to 19:1, methanol combustion is evaluated under five operating conditions in terms of fuel consumption, criteria pollutants, CO2 emissions and engine efficiency in addition to the qualitative assessment of the combustion stability. It was found that combustion is stable at medium to high loads, with medium load NOx emissions levels at least 30% lower than the original diesel engine and comparable emissions at maximum load conditions.
Technical Paper

Fracture Limit Curve Development on ABW (Arc Brazing Weld) Considering Joint Efficiency in LS-DYNA3D

2021-04-06
2021-01-0290
Arc brazing welding (ABW) is widely used in automotive vehicle body and chassis structure along with Arc welding - MIG (Metal Inert Gas) or TIG (Tungsten Inert Gas) and spot welds. MIG welding or ABW (Arc Brazing welding) fracture in vehicle development process is one of the critical phenomena in quasi static structural simulation, like Roof Strength, Seat/Belt Anchorage and Child Restraint Anchorage (CRS). MIG/ABW Fracture has an impact on structural performance. Advantages of ABW over MIG weld is made at relatively lower temperatures. Significant advantage is welding thin sheet metal, no melting of parent metal and retains significant physical properties. This characteristic of ABW enables selection of ABW against MIG welded joint on automotive thin sheet metals. Good ABW joint can be as strong or stronger than MIG welded joint. Joint efficiency (JE) is defined as the ratio between the fracture strength of the joint and the fracture strength of parent metal.
Journal Article

Fuel Effects on the Propensity to Establish Propagating Flames at SPI-Relevant Engine Conditions

2021-04-06
2021-01-0488
In order to further understand the sequence of events leading to stochastic preignition in a spark-ignition engine, a methodology previously developed by the authors was used to evaluate the propensity of a wide range of fuels to establishing propagating flames under conditions representative of those at which stochastic preignition (SPI) occurs. The fuel matrix included single component hydrocarbons, binary mixtures, and real fuel blends. The propensity of each fuel to establish a flame was correlated to multiple fuel properties and shown to exhibit consistent blending behaviors. No single parameter strongly predicted a fuel’s propensity to establish a flame, while multiple reactivity-based parameters exhibited moderate correlation. A two-stage model of the flame establishment process was developed to interpret and explain these results.
Journal Article

GPS Modeling for Vehicle Intelligent Driving Simulation

2018-04-03
2018-01-0763
In recent years, intelligent vehicles have become one of the major research topics in vehicle engineering and have created a new opportunity for the automotive industry. Simulation and real experiment are both essential to the development of intelligent vehicle technologies. Vehicle positioning systems, such as global positioning system (GPS), play an important role in intelligent vehicle development. The GPS model plays a major part in the development of intelligent vehicle simulation systems. Primarily focusing on application requirements of intelligent vehicle simulation platforms for GPS sensor modeling, considering the major factors affecting positioning accuracy in vehicle driving environments, this article establishes a new GPS model and algorithm based on the physical and functional characteristics of GPS. As the basis of this model system, a precise ephemeris model is established to obtain the coordinates of GPS satellites at any given time.
Technical Paper

Global Market Gasoline Quality Review: Five Year Trends in Particulate Emission Indices

2021-04-06
2021-01-0623
A gasoline’s chemical composition impacts a vehicle’s sooting tendency and therefore has been the subject of numerous emissions studies. From these studies, several mathematical correlation equations have been developed to predict a gasoline’s sooting tendency in modern spark-ignited internal combustion engine vehicles. This paper reviews the recently developed predictive tool methods and summarizes five years of global market fuel survey data to characterize gasoline sooting tendency trends around the world. Additionally, the paper will evaluate and suggest changes to the predictive methods to improve emissions correlations.
Technical Paper

Impact of Fuel Detergent Type and Concentration on the Rate and Severity of Stochastic Preignition in a Turbocharged Spark Ignition Direct Injection Gasoline Engine

2021-04-06
2021-01-0490
Stochastic Preignition (SPI) is an abnormal combustion event that occurs in a turbocharged engine and can lead to the loss in fuel economy and engine hardware damage, and in turn result in customer dissatisfaction. It is a significant limiting factor on the use and continued downsizing of turbocharged spark ignited direct injection (SIDI) gasoline engines. Understanding and mitigating all the factors that cause and influence the rate and severity of SPI occurrence are of critical importance to the engine’s continued use and fuel economy improvements for future designs. Previous studies have shown that the heavy molecular weight components of the fuel formulations are one factor that influences the rate of SPI from a turbocharged SIDI gasoline engine. All the previous studies have involved analyzing the fuel’s petroleum hydrocarbon chemistry, but not specifically the additives that are put in the fuel to protect and clean the internal components over the life of the engine.
X