Refine Your Search

Topic

Search Results

Technical Paper

A Parametric Sensitivity Study of Predicted Transient Abuse Loads for Sizing Electric Drive-Unit and Driveline Components

2022-03-29
2022-01-0680
The design and development of electric vehicles involves many unique challenges. One such challenge involves accurately predicting driveline abuse torque loads early in the design cycle to aid with sizing drive-unit and driveline components. Since electrified drivelines typically lack a torque-limiting “fuse” element such as a torque converter or slipping clutch, they can be vulnerable to sudden transient events involving high wheel acceleration or deceleration. Component sizing must account for the loads caused by such events, and these loads must be accurately quantified early on when vehicle parameters haven’t been finalized yet. Early load predictions can be made by completing abuse maneuver simulations where key parameters are varied to gauge their influence on simulated loads. Understanding how these parameters impact loads allows for better risk assessment during the design process, as these parameters will inevitably change until a final design is iterated upon.
Technical Paper

A Solution for a Fail-Operational Control of Steer-by-Wire System without Mechanical Backup Connection

2021-04-06
2021-01-0931
The past five years have seen significant research into autonomous vehicles that employ a by-wire steering rack actuator and no steering wheel. There is a clear synergy between these advancements and the parallel development of complete Steer-by-Wire systems for human-operated passenger vehicle applications. Steer-by-Wire architectures presented thus far in the literature require multiple layers of electrical and/or mechanical redundancy to achieve the safety goals. Unfortunately, this level of redundancy makes it difficult to simultaneously achieve three key manufacturer imperatives: safety, reliability, and cost. Hindered by these challenges, as of 2020 only one production car platform employs a Steer-by-Wire system. This paper presents a Steer-by-Wire architectural solution featuring fail-operational steering control architected with the objective of achieving all system safety, reliability, and cost goals.
Technical Paper

Application of a Mechanism-Based Short Crack Growth Model for the Fatigue Analysis of an Engine Cylinder Block Including Low-Frequency Thermal and High-Frequency Dynamic Loading

2023-04-11
2023-01-0595
Cast aluminum cylinder blocks are frequently used in gasoline and diesel internal combustion engines because of their light-weight advantage. However, the disadvantage of aluminum alloys is their relatively low strength and fatigue resistance which make aluminum blocks prone to fatigue cracking. Engine blocks must withstand a combination of low-cycle fatigue (LCF) thermal loads and high-cycle fatigue (HCF) combustion and dynamic loads. Reliable computational methods are needed that allow for accurate fatigue assessment of cylinder blocks under this combined loading. In several publications, the mechanism-based thermomechanical fatigue (TMF) damage model DTMF describing the growth of short fatigue cracks has been extended to include the effect of both LCF thermal loads and superimposed HCF loadings. This approach is applied to the finite life fatigue assessment of an aluminum cylinder block. The required material properties related to LCF are determined from uniaxial LCF tests.
Technical Paper

Combustion-Timing Control of Low-Temperature Gasoline Combustion (LTGC) Engines by Using Double Direct-Injections to Control Kinetic Rates

2019-04-02
2019-01-1156
Low-temperature gasoline combustion (LTGC) engines can provide high efficiencies and extremely low NOx and particulate emissions, but controlling the combustion timing remains a challenge. This paper explores the potential of Partial Fuel Stratification (PFS) to provide fast control of CA50 in an LTGC engine. Two different compression ratios are used (CR=16:1 and 14:1) that provide high efficiencies and are compatible with mixed-mode SI-LTGC engines. The fuel used is a research grade E10 gasoline (RON 92, MON 85) representative of a regular-grade market gasoline found in the United States. The fuel was supplied with a gasoline-type direct injector (GDI) mounted centrally in the cylinder. To create the PFS, the GDI injector was pulsed twice each engine cycle. First, an injection early in the intake stroke delivered the majority of the fuel (70 - 80%), establishing the minimum equivalence ratio in the charge.
Technical Paper

Comparison of Stochastic Pre-Ignition Behaviors on a Turbocharged Gasoline Engine with Various Fuels and Lubricants

2016-10-17
2016-01-2291
Stochastic pre-ignition (SPI) has been commonly observed in turbocharged spark-ignition direct-injection (SIDI) engines at low-speed and high-load conditions, which causes extremely high cylinder pressures that can damage an engine immediately or degrade the engine life. The compositions and properties of fuels and lubricants have shown a strong impact on SPI frequency. This study experimentally evaluated SPI behaviors on a 2.0-liter 4-cylinder turbocharged SIDI engine with China V market fuel and China fuel blended to US Tier II fuel specifications. China V market fuel showed significantly higher SPI frequency and severity than China blended US Tier II fuel, which was attributed to its lower volatility between 100 °C to 150 °C (or lower T60 to T90 in the distillation curve). Two different formulations of lubricant oils were also tested and their impact on SPI were compared.
Technical Paper

Constitutive Modeling and Thermomechanical Fatigue Life Predictions of A356-T6 Aluminum Cylinder Heads Considering Ageing Effects

2019-04-02
2019-01-0534
Cast aluminum alloys are frequently used as materials for cylinder head applications in internal combustion gasoline engines. These components must withstand severe cyclic mechanical and thermal loads throughout their lifetime. Reliable computational methods allow for accurate estimation of stresses, strains, and temperature fields and lead to more realistic Thermomechanical Fatigue (TMF) lifetime predictions. With accurate numerical methods, the components could be optimized via computer simulations and the number of required bench tests could be reduced significantly. These types of alloys are normally optimized for peak hardness from a quenched state that maximizes the strength of the material. However due to high temperature exposure, in service or under test conditions, the material would experience an over-ageing effect that leads to a significant reduction in the strength of the material.
Technical Paper

Correlation of Chemical Compositions and Fuel Properties with Fuel Octane Rating of Gasoline Containing Ethanol

2011-08-30
2011-01-1986
With increasing use of ethanol in automotive fuel in recent years, which can be made from renewable feedstocks, the chemical composition of gasoline is changed. The compositional change results in many changes in fuel properties. One key property is the octane rating of gasoline. Market data has shown the shifts of octane rating (antiknock index or AKI) upward due to more penetration of E10 gasoline in the US market. However, the increase in research octane is more pronounced as compared to motor octane, therefore the increase in octane sensitivity in gasoline. Refineries have used the change in octane due to ethanol contribution by sending so called sub-grade gasoline to terminals expecting the final blend after mixing with ethanol to meet the market requirement in octane. Thus the octane rating of the final blend will largely depend on the sub-grade gasoline composition and ethanol.
Technical Paper

Defining In-Vehicle Location and Functional Attributes of a ‘Button-Style Electronic Automatic Transmission Shifter’ Using DFSS Methodology with Customer Clinic Approach

2017-03-28
2017-01-1131
The implementation of electronic shifters (e-shifter) for automatic transmissions in vehicles has created many new opportunities for the customer facing transmission interface and in-vehicle packaging. E-shifters have become popular in recent years as their smaller physical size leads to packaging advantages, they reduce the mass of the automatic transmission shift system, they are easier to install during vehicle assembly, and act as an enabler for autonomous driving. A button-style e-shifter has the ability to create a unique customer interface to the automatic transmission, as it is very different from the conventional column lever or linear console shifter. In addition to this, a button-style e-shifter can free the center console of valuable package space for other customer-facing functions, such as storage bins and Human-Machine Interface controllers.
Journal Article

Detailed Analyses and Correlation of Fuel Effects on Stochastic Preignition

2020-04-14
2020-01-0612
Stochastic or Low-Speed Preignition (SPI or LSPI) is an undesirable abnormal combustion phenomenon encountered in spark-ignition engines. It is characterized by very early heat release and high cylinder pressure and can cause knock, noise and ultimately engine damage. Much of the focus on mitigating SPI has been directed towards the engine oil formulation, leading to the emergence of the Sequence IX test and second-generation GM dexos® oil requirements. Engine design, calibration and fuels also contribute to the prevalence of SPI. As part of a recently completed research consortium, a series of engine tests were completed to determine the impact of fuel composition on SPI frequency. The fuel blends had varying levels of paraffins, olefins, aromatics and ethanol.
Technical Paper

Development of Robust Traction Power Inverter Residing in Integrated Power Electronics for Ultium Electric Vehicles

2024-04-09
2024-01-2211
General Motors (GM) is working towards a future world of zero crashes, zero emissions and zero congestion. It’s “Ultium” platform has revolutionized electric vehicle drive units to provide versatile yet thrilling driving experience to the customers. Three variants of traction power inverter modules (TPIMs) including a dual channel inverter configuration are designed in collaboration with LG Magna e-Powertrain (LGM). These TPIMs are integrated with other power electronics components inside Integrated power electronics (IPE) to eliminate redundant high voltage connections and increase power density. The developed power module from LGM has used state-of-the art sintering technology and double-sided cooled structure to achieve industry leading performance and reliability. All the components are engineered with high level of integration skills to utilize across TPIM variants.
Technical Paper

Driving Automation System Test Scenario Development Process Creation and Software-in-the-Loop Implementation

2021-04-06
2021-01-0062
Automated driving systems (ADS) are one of the key modern technologies that are changing the way we perceive mobility and transportation. In addition to providing significant access to mobility, they can also be useful in decreasing the number of road accidents. For these benefits to be realized, candidate ADS need to be proven as safe, robust, and reliable; both by design and in the performance of navigating their operational design domain (ODD). This paper proposes a multi-pronged approach to evaluate the safety performance of a hypothetical candidate system. Safety performance is assessed through using a set of test cases/scenarios that provide substantial coverage of those potentially encountered in an ODD. This systematic process is used to create a library of scenarios, specific to a defined domain. Beginning with a system-specific ODD definition, a set of core competencies are identified.
Technical Paper

Effect of Different Magnesium Powertrain Alloys on the High Pressure Die Casting Characteristics of an Automatic Transmission Case

2010-04-12
2010-01-0409
The main objective of this paper is to demonstrate how flow and solidification simulation were used in the development of a new gating system design for three different magnesium alloys; and to determine the relative castability of each alloy based on casting trials. Prototype tooling for an existing 3-slide rear wheel drive automatic transmission case designed for aluminum A380 was provided by General Motors. Flow and solidification simulation were performed using Magmasoft on the existing runner system design using A380 (baseline), AE44, MRI153M and MRI230D. Based on the filling results, new designs were developed at Meridian for the magnesium alloys. Subsequent modeling was performed to verify the new design and the changes were incorporated into the prototype tool. Casting trials were conducted with the three magnesium alloys and the relative castability was evaluated.
Journal Article

Fuel Effects on the Propensity to Establish Propagating Flames at SPI-Relevant Engine Conditions

2021-04-06
2021-01-0488
In order to further understand the sequence of events leading to stochastic preignition in a spark-ignition engine, a methodology previously developed by the authors was used to evaluate the propensity of a wide range of fuels to establishing propagating flames under conditions representative of those at which stochastic preignition (SPI) occurs. The fuel matrix included single component hydrocarbons, binary mixtures, and real fuel blends. The propensity of each fuel to establish a flame was correlated to multiple fuel properties and shown to exhibit consistent blending behaviors. No single parameter strongly predicted a fuel’s propensity to establish a flame, while multiple reactivity-based parameters exhibited moderate correlation. A two-stage model of the flame establishment process was developed to interpret and explain these results.
Technical Paper

Impact of Fuel Detergent Type and Concentration on the Rate and Severity of Stochastic Preignition in a Turbocharged Spark Ignition Direct Injection Gasoline Engine

2021-04-06
2021-01-0490
Stochastic Preignition (SPI) is an abnormal combustion event that occurs in a turbocharged engine and can lead to the loss in fuel economy and engine hardware damage, and in turn result in customer dissatisfaction. It is a significant limiting factor on the use and continued downsizing of turbocharged spark ignited direct injection (SIDI) gasoline engines. Understanding and mitigating all the factors that cause and influence the rate and severity of SPI occurrence are of critical importance to the engine’s continued use and fuel economy improvements for future designs. Previous studies have shown that the heavy molecular weight components of the fuel formulations are one factor that influences the rate of SPI from a turbocharged SIDI gasoline engine. All the previous studies have involved analyzing the fuel’s petroleum hydrocarbon chemistry, but not specifically the additives that are put in the fuel to protect and clean the internal components over the life of the engine.
Technical Paper

Influence of Ethanol and MTBE Proportion in China VIB Gasoline on Vehicle Particulate Emissions

2021-04-06
2021-01-0540
With the implementation of the China VI gasoline standards, the use of ethanol is expanding and is intended to further reduce vehicle criteria gaseous and particulate emissions. However, due to the constraints of biomass ethanol production, petroleum derived Methyl tert-Butyl Ether (MTBE) is being used in addition to ethanol to improve fuel octane and maintain oxygen content. The impact of these mixed oxygenates on vehicle emissions are studied in this paper. The correlation of fuel characteristics to vehicle particulate emissions and their predictive indices has been investigated. The results from this study suggest some alternatives to existing fuel indices due to oxygenate contribution. Additionally, this paper studies, the emissions of three direct-injection turbocharged vehicle models focusing on particulate emissions from the Worldwide Harmonized Light Vehicles Test Cycle (WLTC). The test fuels were China VIb gasoline, blended with different ratios of ethanol and MTBE.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Technical Paper

Modeling the Stiffness and Damping Properties of Styrene-Butadiene Rubber

2011-05-17
2011-01-1628
Styrene-Butadiene Rubber (SBR), a copolymer of butadiene and styrene, is widely used in the automotive industry due to its high durability and resistance to abrasion, oils and oxidation. Some of the common applications include tires, vibration isolators, and gaskets, among others. This paper characterizes the dynamic behavior of SBR and discusses the suitability of a visco-elastic model of elastomers, known as the Kelvin model, from a mathematical and physical point of view. An optimization algorithm is used to estimate the parameters of the Kelvin model. The resulting model was shown to produce reasonable approximations of measured dynamic stiffness. The model was also used to calculate the self heating of the elastomer due to energy dissipation by the viscous damping components in the model. Developing such a predictive capability is essential in understanding the dynamic behavior of elastomers considering that their dynamic stiffness can in general depend on temperature.
Technical Paper

N&V Component Structural Integration and Mounted Component Durability Implications

2020-04-14
2020-01-1396
Exterior component integration presents competing performance challenges for balanced exterior styling, safety, ‘structural feel’ [1] and durability. Industry standard practices utilize noise and vibration mode maps and source-path-receiver [2] considerations for component mode frequency placement. This modal frequency placement has an influence on ‘structural feel’ and durability performance. Challenges have increased with additional styling content, geometric overhang from attachment points, component size and mass, and sensor modules. Base excitation at component attachment interfaces are increase due to relative positioning of the suspension and propulsion vehicle source inputs. These components might include headlamps, side mirrors, end gates, bumpers and fascia assemblies. Here, we establish basic expectations for the behavior of these systems, and ultimately consolidate existing rationales that are applied to these systems.
Journal Article

Re-imagining Brake Disc Thermal Fatigue Testing to Relate to Field Use

2022-09-19
2022-01-1163
The validation of brake discs has remained, to this day, heavily reliant on “Thermal Abuse” or “Thermal Cracking” type testing, with many procedures so dated that most engineers active in the industry today cannot even recall the origin of the test. These procedures - of which there are many variants - all share the trait of greatly accelerating durability testing by performing repeated high power (high speed and high deceleration) brake applies to drive huge temperature gradients and internal stress, and often allowing the disc to get very hot, to where the strength of the material from which the disc is constructed is significantly degraded. There is little debate about whether these procedures work; by and large disc durability issues in the field are extremely rare.
Technical Paper

Simple Robust Formulations for Engineers: An Alternate to Taguchi S/N

2020-04-14
2020-01-0604
Robust engineering is an integral part of the quality initiative, Design For Six Sigma (DFSS), in most companies to enable good designs and products for reliability and durability. Taguchi’s signal-to-noise ratio has been considered as a good performance index for robustness for many years. An alternate approach that is direct and simple for measuring robustness is proposed. In this approach, robustness is measured in terms of an augmented output response and it is a composite index of variation and efficiency of a system. This formulation represents an engineering design intent of a product in a statistical sense, so engineers can understand, communicate, and resonate at ease. Robust formulations are illustrated and discussed with case studies for smaller-the-better, nominal-the-best, and dynamic responses. Confirmation runs of optimization show good agreement of the augmented response with the additive predictive models.
X