Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3-D Machine-Vision Technique for Rapid 3D Shape Measurement and Surface Quality Inspection

1999-03-01
1999-01-0418
A novel computer vision technique for rapid measurement of surface coordinates is presented. The technique is based on the marriage of a digital fringe projection technique and a fringe-phase extraction algorithm. A digitally controlled video signal in the form of linear and parallel fringes of cosinusoidal intensity variation is projected onto an object. The fringe pattern is perturbed by the three-dimensional object surface with fringe-phase containing information on the depth of the object. A phase extraction algorithm is used to determine the fringe-phase distribution, from which the three-dimensional surface coordinates are determined. The theoretical basis of this technique and some experimental results are presented in this paper.
Technical Paper

3D CFD Modeling of an Electric Motor to Predict Spin Losses at Different Temperatures

2024-04-09
2024-01-2208
With the advent of this new era of electric-driven automobiles, the simulation and virtual digital twin modeling world is now embarking on new sets of challenges. Getting key insights into electric motor behavior has a significant impact on the net output and range of electric vehicles. In this paper, a complete 3D CFD model of an Electric Motor is developed to understand its churning losses at different operating speeds. The simulation study details how the flow field develops inside this electric motor at different operating speeds and oil temperatures. The contributions of the crown and weld endrings, crown and weld end-windings, and airgap to the net churning loss are also analyzed. The oil distribution patterns on the end-windings show the effect of the centrifugal effect in scrapping oil from the inner structures at higher speeds. Also, the effect of the sump height with higher operating speeds are also analyzed.
Technical Paper

A 3-D CFD Investigation of Ball Bearing Weir Geometries and Design Considerations for Lubrication

2024-04-09
2024-01-2439
The study focuses on understanding the air and oil flow characteristics within a ball bearing during high-speed rotation, with a particular emphasis on optimizing frictional heat dissipation and oil lubrication methods. Computational fluid dynamics (CFD) techniques are employed to analyze the intricate three-dimensional airflow and oil flow patterns induced by the motion of rotating and orbiting balls within the bearing. A significant challenge in conducting three-dimensional CFD studies lies in effectively resolving the extremely thin gaps existing between the balls, races, and cages within the bearing assembly. In this research, we adopt the ball-bearing structured meshing strategy offered by Simerics-MP+ to meticulously address these micron-level clearances, while also accommodating the rolling and rotation of individual balls. Furthermore, we investigate the impact of different designs of the lubrication ports to channel oil to other locations compared to the ball bearings.
Technical Paper

A Comprehensive Method for Piston Secondary Dynamics and Piston-Bore Contact

2007-04-16
2007-01-1249
Low vibration and noise level in internal combustion engines has become an essential part of the design process. It is well known that the piston assembly can be a major source of engine mechanical friction and cold start noise, if not designed properly. The piston secondary motion and piston-bore contact pattern are critical in piston design because they affect the skirt-to-bore impact force and therefore, how the piston impact excitation energy is damped, transmitted and eventually radiated from the engine structure as noise. An analytical method is presented in this paper for simulating piston secondary dynamics and piston-bore contact for an asymmetric half piston model. The method includes several important physical attributes such as bore distortion effects due to mechanical and thermal deformation, inertia loading, piston barrelity and ovality, piston flexibility and skirt-to-bore clearance. The method accounts for piston kinematics, rigid-body dynamics and flexibility.
Technical Paper

A Comprehensive Testing and Evaluation Approach for Autonomous Vehicles

2018-04-03
2018-01-0124
Performance testing and evaluation always plays an important role in the developmental process of a vehicle, which also applies to autonomous vehicles. The complex nature of an autonomous vehicle from architecture to functionality demands even more quality-and-quantity controlled testing and evaluation than ever before. Most of the existing testing methodologies are task-or-scenario based and can only support single or partial functional testing. These approaches may be helpful at the initial stage of autonomous vehicle development. However, as the integrated autonomous system gets mature, these approaches fall short of supporting comprehensive performance evaluation. This paper proposes a novel hierarchical and systematic testing and evaluation approach to bridge the above-mentioned gap.
Technical Paper

A Computational Fluid Dynamics (CFD) Model for Gear Churning

2018-04-03
2018-01-0401
This paper presents a computational fluid dynamics (CFD) model for predicting power losses associated with churning of oil by gears or other similar rotating components. The modeling approach and parameters are optimized to ensure the accuracy, robustness, and computational efficiency of these predictions. These studies include a look at two types of mesh and a turbulence model selection. The focus is on multiple reference frame (MRF) modeling technique for its computational efficiency advantage. Model predictions are compared to previously published experimental data [1] under varying operating conditions typical for an automotive transmission application. The model shows good agreement with the hardware both quantitatively and qualitatively, capturing the trends with speed and submersion level. The paper concludes with presenting some key lessons learned, and recommendation for future work to ultimately build a highly reliable tool as part of the virtual product development.
Technical Paper

A Computational Study on the Critical Ignition Energy and Chemical Kinetic Feature for Li-Ion Battery Thermal Runaway

2018-04-03
2018-01-0437
Lithium-ion (Li-ion) batteries and issues related to their thermal management and safety have been attracting extensive research interests. In this work, based on a recent thermal chemistry model, the phenomena of thermal runaway induced by a transient internal heat source are computationally investigated using a three-dimensional (3D) model built in COMSOL Multiphysics 5.3. Incorporating the anisotropic heat conductivity and typical thermal chemical parameters available from literature, temperature evolution subject to both heat transfer from an internal source and the activated internal chemical reactions is simulated in detail. This paper focuses on the critical runaway behavior with a delay time around 10s. Parametric studies are conducted to identify the effects of the heat source intensity, duration, geometry, as well as their critical values required to trigger thermal runaway.
Technical Paper

A Cost-Driven Method for Design Optimization Using Validated Local Domains

2013-04-08
2013-01-1385
Design optimization often relies on computational models, which are subjected to a validation process to ensure their accuracy. Because validation of computer models in the entire design space can be costly, we have previously proposed an approach where design optimization and model validation, are concurrently performed using a sequential approach with variable-size local domains. We used test data and statistical bootstrap methods to size each local domain where the prediction model is considered validated and where design optimization is performed. The method proceeds iteratively until the optimum design is obtained. This method however, requires test data to be available in each local domain along the optimization path. In this paper, we refine our methodology by using polynomial regression to predict the size and shape of a local domain at some steps along the optimization process without using test data.
Technical Paper

A Decision Analytic Approach to Incorporating Value of Information in Autonomous Systems

2018-04-03
2018-01-0799
Selecting the right transportation platform is challenging, whether it is at a personal level or at an organizational level. In settings where predominantly the functional aspects rule the decision making process, defining the mobility of a vehicle is critical for comparing different offerings and making acquisition decisions. With the advent of intelligent vehicles, exhibiting partial to full autonomy, this challenge is exacerbated. The same vehicle may traverse independently and with greater tolerance for acceleration than human occupied vehicles, while, at the same time struggle with obstacle avoidance. The problem presents itself at the individual vehicle sensing level and also at the vehicle/fleet level. At the sensing and information level, one can be looking at issues of latency, bandwidth and optimal information fusion from multiple sources including privileged sensing. At the overall vehicle level, one focuses more on the ability to complete missions.
Technical Paper

A Direct 1D/3D (GT-SUITE/SimericsMP+) Coupled Computational Approach to Study the Impact of Engine Oil Pan Sloshing on Lubrication Pump Performance

2020-04-14
2020-01-1112
During a vehicle drive cycle, the oil in the engine oil pan sloshes very vigorously due to the acceleration of the vehicle. This can cause the pickup tube in the engine oil pan to become uncovered from oil and exposed to air, which affects the lubrication pump performance. Engine oil pan sloshing is inherently a 3D problem as the free oil surface is constantly changing. Multi-dimensional Computational Fluid Dynamics (CFD) methods are very useful to simulate such problems with high detail and accuracy but are computationally very expensive. Part of the engine lubrication system, such as the pump, can be modelled in 1D which can predict accurate results at relatively high computational speeds. By utilizing the advantages of both 1D and 3D CFD models, a coupled 1D-3D simulation approach has been developed to capture the detailed oil sloshing phenomenon in SimericsMP+ and the system level simulation is conducted in GT-SUITE where 3D spatial data is not required.
Technical Paper

A FEM Model to Predict Pressure Loading Cycle for Hydroforming Processes

1999-03-01
1999-01-0677
Tubular hydroforming is a novel process that has recently gained much attention due to its cost-effective application in the automotive industry. Hydroformed automotive parts have high strength to weight ratio and have good repeatability with high dimensional accuracy. At this time, there is little experience in modeling the hydroforming process to better understand its application and researchers have tried using stamping simulation software to analyze the process. Unlike conventional sheet stamping which is a displacement driven process, tubular hydroforming is a force driven process and its success is governed by the nature of internal pressurization. Hence, a new three-dimensional finite element model using a computationally efficient 6-noded shell element has been developed. A simple pressure prediction model has been developed and integrated into the formulation for effective control of the process.
Technical Paper

A Fresh Perspective on Hypoid Duty Cycle Severity

2021-04-06
2021-01-0707
A new method is demonstrated for rating the “severity” of a hypoid gear set duty cycle (revolutions at torque) using the intercept of T-N curve to support gearset selection and sizing decision across vehicle programs. Historically, it has been customary to compute a cumulative damage (using Miner's Rule) for a rotating component duty cycle given a T-N curve slope and intercept for the component and failure mode of interest. The slope and intercept of a T-N curve is often proprietary to the axle manufacturer and are not published. Therefore, for upfront sizing and selection purposes representative T-N properties are used to assess relative component duty cycle severity via cumulative damage (non-dimensional quantity). A similar duty cycle severity rating can also be achieved by computing the intercept of the T-N curve instead of cumulative damage, which is the focus of this study.
Journal Article

A Group-Based Space-Filling Design of Experiments Algorithm

2018-04-03
2018-01-1102
Computer-aided engineering (CAE) is an important tool routinely used to simulate complex engineering systems. Virtual simulations enhance engineering insight into prospective designs and potential design issues and can limit the need for expensive engineering prototypes. For complex engineering systems, however, the effectiveness of virtual simulations is often hindered by excessive computational cost. To minimize the cost of running expensive computer simulations, approximate models of the original model (often called surrogate models or metamodels) can provide sufficient accuracy at a lower computing overhead compared to repeated runs of a full simulation. Metamodel accuracy improves if constructed using space-filling designs of experiments (DOEs). The latter provide a collection of sample points in the design space preferably covering the entire space.
Technical Paper

A Maneuver-Based Threat Assessment Strategy for Collision Avoidance

2018-04-03
2018-01-0598
Advanced driver assistance systems (ADAS) are being developed for more and more complicated application scenarios, which often require more predictive strategies with better understanding of driving environment. Taking traffic vehicles’ maneuvers into account can greatly expand the beforehand time span for danger awareness. This paper presents a maneuver-based strategy to vehicle collision threat assessment. First, a maneuver-based trajectory prediction model (MTPM) is built, in which near-future trajectories of ego vehicle and traffic vehicles are estimated with the combination of vehicle’s maneuvers and kinematic models that correspond to every maneuver. The most probable maneuvers of ego vehicle and each traffic vehicles are modeled and inferred via Hidden Markov Models with mixture of Gaussians outputs (GMHMM). Based on the inferred maneuvers, trajectory sets consisting of vehicles’ position and motion states are predicted by kinematic models.
Technical Paper

A Method of Filter Implementation Using Heterogeneous Computing System for Driver Health Monitoring

2021-04-06
2021-01-0103
Research in any field of study requires analysis and comparisons or real-time predictions to extract useful information. To prove that the results have practical potential, various filtering techniques and methodologies should be designed and implemented. Filters being a class of signal processing helps innovate new technologies with various kinds of outcomes, using filters there are always various methods to solve a problem. Considering the current COVID-19 situation, researchers are working on sequencing the novel coronavirus and the genomes of people afflicted with COVID-19 using CPUs and GPUs along with various filtering techniques. In this paper we are using a method of filter implementation to collect raw heart rate data samples from fingertip and ear lobe and process those results on CPUs and GPUs. Our method of implementation to collect raw heart rate data is using a photoplethysmography method.
Journal Article

A Methodology for Fatigue Life Estimation of Linear Vibratory Systems under Non-Gaussian Loads

2017-03-28
2017-01-0197
Fatigue life estimation, reliability and durability are important in acquisition, maintenance and operation of vehicle systems. Fatigue life is random because of the stochastic load, the inherent variability of material properties, and the uncertainty in the definition of the S-N curve. The commonly used fatigue life estimation methods calculate the mean (not the distribution) of fatigue life under Gaussian loads using the potentially restrictive narrow-band assumption. In this paper, a general methodology is presented to calculate the statistics of fatigue life for a linear vibratory system under stationary, non-Gaussian loads considering the effects of skewness and kurtosis. The input loads are first characterized using their first four moments (mean, standard deviation, skewness and kurtosis) and a correlation structure equivalent to a given Power Spectral Density (PSD).
Technical Paper

A Methodology of Design for Fatigue Using an Accelerated Life Testing Approach with Saddlepoint Approximation

2019-04-02
2019-01-0159
We present an Accelerated Life Testing (ALT) methodology along with a design for fatigue approach, using Gaussian or non-Gaussian excitations. The accuracy of fatigue life prediction at nominal loading conditions is affected by model and material uncertainty. This uncertainty is reduced by performing tests at a higher loading level, resulting in a reduction in test duration. Based on the data obtained from experiments, we formulate an optimization problem to calculate the Maximum Likelihood Estimator (MLE) values of the uncertain model parameters. In our proposed ALT method, we lift all the assumptions on the type of life distribution or the stress-life relationship and we use Saddlepoint Approximation (SPA) method to calculate the fatigue life Probability Density Functions (PDFs).
Technical Paper

A New Calibration Method for Digital 3D Profilometry System

2007-04-16
2007-01-1380
Recently the use of digital 3D profilometry in the automotive industries has become increasingly popular. The effective techniques for 3D shape measurement, especially for the measurement of complicated structures, have become more and more significant. Different optical inspective methods, such as 3D profilometry, laser scanning and Coordinate-Measuring Machine (CMM), have been applied for 3D shape measurement. Among these methods, 3D profilometry seems to be the fastest and inexpensive method with considerably accurate result, and it has simple setup and full field measuring ability compared with other techniques. In this paper, a novel calibration method for 3D-profilometry will be introduced. In this method, a multiple-step calibration procedure is utilized and best-fit calibration curves are obtained to improve measurement accuracy. A recursive algorithm is used for data evaluation, along with calibration data.
Technical Paper

A New Predictive Vehicle Particulate Emissions Index Based on Gasoline Simulated Distillation

2022-03-29
2022-01-0489
Fuel chemistry plays a crucial role in the continued reduction of particulate emissions (PE) and cleaner air quality from vehicles and equipment powered by internal combustion engines (ICE). Over the past ten years, there have been great improvements in predictive particulate emissions indices (correlative mathematical models) based on the fuel’s composition. Examples of these particulate indices (PI) are the Honda Particulate Matter Index (PMI) and the General Motors Particulate Evaluation Index (PEI). However, the analytical chemistry lab methods used to generate data for these two PI indices are very time-consuming. Because gasoline can be mixtures of hundreds of hydrocarbon compounds, these lab methods typically include the use of the high resolution chromatographic separation techniques such as detailed hydrocarbon analysis (DHA), with 100m chromatography columns and long (3 - 4 hours) analysis times per sample.
Technical Paper

A Nonlinear Slip Ratio Observer Based on ISS Method for Electric Vehicles

2018-04-03
2018-01-0557
Knowledge of the tire slip ratio can greatly improve vehicle longitudinal stability and its dynamic performance. Most conventional slip ratio observers were mainly designed based on input of non-driven wheel speed and estimated vehicle speed. However, they are not applicable for electric vehicles (EVs) with four in-wheel motors. Also conventional methods on speed estimation via integration of accelerometer signals can often lead to large offset by long-time integral calculation. Further, model uncertainties, including steady state error and unmodeled dynamics, are considered as additive disturbances, and may affect the stability of the system with estimated state error. This paper proposes a novel slip ratio observer based on input-to-state stability (ISS) method for electric vehicles with four-wheel independent driving motors.
X