Refine Your Search

Topic

Author

Search Results

Technical Paper

A Control Algorithm for Low Pressure - EGR Systems Using a Smith Predictor with Intake Oxygen Sensor Feedback

2016-04-05
2016-01-0612
Low-pressure cooled EGR (LP-cEGR) systems can provide significant improvements in spark-ignition engine efficiency and knock resistance. However, open-loop control of these systems is challenging due to low pressure differentials and the presence of pulsating flow at the EGR valve. This research describes a control structure for Low-pressure cooled EGR systems using closed loop feedback control along with internal model control. A Smith Predictor based PID controller is utilized in combination with an intake oxygen sensor for feedback control of EGR fraction. Gas transport delays are considered as dead-time delays and a Smith Predictor is one of the conventional methods to address stability concerns of such systems. However, this approach requires a plant model of the air-path from the EGR valve to the sensor.
Technical Paper

A Diesel Engine Emission System Based on Brownian Diffusion a Separation

2021-04-06
2021-01-0583
Diesel engine exhaust poses an ongoing threat to human health as well as to the environment. Automotive exhaust treatment systems have been developed over the years to reduce the large amount of diesel particulate matter (DPM) released to the atmosphere. Current systems can be categorized as selective catalytic reduction, catalytic converters, and diesel particulate filters. This study presents an emission system that focuses on the removal of exhaust particles using Brownian diffusion of DPM toward fog drops followed by cyclonic separation of DPM rich fog drops. The experimental system consisted of a 13.2 kW diesel engine, heat exchanger to cool the exhaust to saturation temperature, ultrasonic fogger, cyclone separator, and recovery of waste particulate. Representative emission tests have been performed at five different diesel engine speeds and corresponding crankshaft loads.
Journal Article

A Nonlinear Model Predictive Control Strategy with a Disturbance Observer for Spark Ignition Engines with External EGR

2017-03-28
2017-01-0608
This research proposes a control system for Spark Ignition (SI) engines with external Exhaust Gas Recirculation (EGR) based on model predictive control and a disturbance observer. The proposed Economic Nonlinear Model Predictive Controller (E-NMPC) tries to minimize fuel consumption for a number of engine cycles into the future given an Indicated Mean Effective Pressure (IMEP) tracking reference and abnormal combustion constraints like knock and combustion variability. A nonlinear optimization problem is formulated and solved in real time using Sequential Quadratic Programming (SQP) to obtain the desired control actuator set-points. An Extended Kalman Filter (EKF) based observer is applied to estimate engine states, combining both air path and cylinder dynamics. The EKF engine state(s) observer is augmented with disturbance estimation to account for modeling errors and/or sensor/actuator offset.
Journal Article

A Real-Time Model for Spark Ignition Engine Combustion Phasing Prediction

2016-04-05
2016-01-0819
As engines are equipped with an increased number of control actuators to meet fuel economy targets they become more difficult to control and calibrate. The large number of control actuators encourages the investigation of physics-based control strategies to reduce calibration time and complexity. Of particular interest is spark timing control and calibration since it has a significant influence on engine efficiency, emissions, vibration and durability. Spark timing determination to achieve a desired combustion phasing is currently an empirical process that occurs during the calibration phase of engine development. This process utilizes a large number of stored surfaces and corrections to account for the wide range of operating environments and conditions that a given engine will experience. An obstacle to realizing feedforward physics-based combustion phasing control is the requirement for an accurate and fast combustion model.
Technical Paper

A Review of Spark-Ignition Engine Air Charge Estimation Methods

2016-04-05
2016-01-0620
Accurate in-cylinder air charge estimation is important for engine torque determination, controlling air-to-fuel ratio, and ensuring high after-treatment efficiency. Spark ignition (SI) engine technologies like variable valve timing (VVT) and exhaust gas recirculation (EGR) are applied to improve fuel economy and reduce pollutant emissions, but they increase the complexity of air charge estimation. Increased air-path complexity drives the need for cost effective solutions that produce high air mass prediction accuracy while minimizing sensor cost, computational effort, and calibration time. A large number of air charge estimation techniques have been developed using a range of sensors sets combined with empirical and/or physics-based models. This paper provides a technical review of research in this area, focused on SI engines.
Journal Article

Aerodynamics of a Pickup Truck: Combined CFD and Experimental Study

2009-04-20
2009-01-1167
This paper describes a computational and experimental effort to document the detailed flow field around a pickup truck. The major objective was to benchmark several different computational approaches through a series of validation simulations performed at Clemson University (CU) and overseen by those performing the experiments at the GM R&D Center. Consequently, no experimental results were shared until after the simulations were completed. This flow represented an excellent test case for turbulence modeling capabilities developed at CU. Computationally, three different turbulence models were employed. One steady simulation used the realizable k-ε model. The second approach was an unsteady RANS simulation, which included a turbulence closure model developed in-house. This simulation captured the unsteady shear layer rollup and breakdown over the front of the hood that was expected and seen in the experiments but unattainable with other off-the-shelf turbulence models.
Technical Paper

An Innovative Electric Motor Cooling System for Hybrid Vehicles - Model and Test

2019-04-02
2019-01-1076
Enhanced electric motor performance in transportation vehicles can improve system reliability and durability over rigorous operating cycles. The design of innovative heat rejection strategies in electric motors can minimize cooling power consumption and associated noise generation while offering configuration flexibility. This study investigates an innovative electric motor cooling strategy through bench top thermal testing on an emulated electric motor. The system design includes passive (e.g., heat pipes) cooling as the primary heat rejection pathway with supplemental conventional cooling using a variable speed coolant pump and radiator fan(s). The integrated thermal structure, “cradle”, transfers heat from the motor shell towards an end plate for heat dissipation to the ambient surroundings or transmission to an external thermal bus to remote heat exchanger.
Technical Paper

Analysis of a Split Injection Strategy to Enable High Load, High Compression Ratio Spark Ignition with Hydrous Ethanol

2023-10-31
2023-01-1616
High compression ratios are critical to increasing the efficiency of spark ignition engines, but the trend in downsized and down sped configurations has brought attention to the nominally low compression ratios used to avoid knock. Knock is an abnormal combustion event defined by the acoustic sound caused by end-gas auto-ignition ahead of the flame front. In order to avoid engine-damaging levels of knock, low compression ratios and retarded combustion phasing at high loads are used, both of which lower efficiency. Low carbon alternative fuels such as ethanol or water-based alcohol fuels combine strong chemical auto-ignition resistance with large charge cooling characteristics that can suppress knock and enable optimal combustion phasing, thus allowing an increase in the compression ratio.
Journal Article

Aspects of HC-SCR Catalyst Durability for Lean-Burn Engine Exhaust Aftertreatment

2010-10-25
2010-01-2160
Unique silver/alumina (Ag-Al₂O₃) catalysts developed using high-throughput discovery techniques in collaboration with BASF Corporation were investigated at General Motors Corporation under simulated lean-burn engine exhaust feed conditions for the selective catalytic reduction of NOx using hydrocarbons (HC-SCR). Hydrocarbon mixtures were used as the reductant to model the multi-component nature of diesel fuel and gasoline. Previous work has shown promising HC-SCR results in both laboratory reactor and engine dynamometer testing. This report investigates several aspects of HC-SCR catalyst durability, including thermal durability, sulfur tolerance, and hydrocarbon deactivation.
Technical Paper

Assessing the Impact of a Novel TBC Material on Heat Transfer in a Spark Ignition Engine through 3D CFD-FEA Co-Simulation Routine

2022-03-29
2022-01-0402
Thermal barrier coatings (TBCs) have been of interest since the 1970s for application in internal combustion (IC) engines. Thin TBCs exhibit a temperature swing phenomenon wherein wall temperatures dynamically respond to the transient working-gas temperature throughout the engine cycle, thus reducing the temperature difference driving the heat transfer. Determining these varying wall temperatures is necessary to evaluate and study the effect of coatings on wall heat transfer. This study focuses on developing a 3D computational fluid dynamics (CFD)-finite element analysis (FEA) coupled simulation, or co-simulation, routine to determine the wall temperatures of a piston coated with a thin TBC layer subject to spark ignition combustion heat flux. A CONVERGE 3D-CFD model was used to simulate the combustion process in a single-cylinder, light-duty experimental spark ignition (SI) engine.
Journal Article

CO Emission Model for an Integrated Diesel Engine, Emissions, and Exhaust Aftertreatment System Level Model

2009-04-20
2009-01-1511
A kinetic carbon monoxide (CO) emission model is developed to simulate engine out CO emissions for conventional diesel combustion. The model also incorporates physics governing CO emissions for low temperature combustion (LTC). The emission model will be used in an integrated system level model to simulate the operation and interaction of conventional and low temperature diesel combustion with aftertreatment devices. The Integrated System Model consists of component models for the diesel engine, engine-out emissions (such as NOx and Particulate Matter), and aftertreatment devices (such as DOC and DPF). The addition of CO emissions model will enhance the capability of the Integrated System Model to predict major emission species, especially for low temperature combustion. In this work a CO emission model is developed based on a two-step global kinetic mechanism [8].
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Technical Paper

Comparing Open-Source UDS Implementations Through Fuzz Testing

2024-04-09
2024-01-2799
In the ever-evolving landscape of automotive technology, the need for robust security measures and dependable vehicle performance has become paramount with connected vehicles and autonomous driving. The Unified Diagnostic Services (UDS) protocol is the diagnostic communication layer between various vehicle components which serves as a critical interface for vehicle servicing and for software updates. Fuzz testing is a dynamic software testing technique that involves the barrage of unexpected and invalid inputs to uncover vulnerabilities and erratic behavior. This paper presents the implementation of fuzz testing methodologies on the UDS layer, revealing the potential vulnerabilities that could be exploited by malicious entities. By employing both open-source and commercial fuzzing tools and techniques, this paper simulates real-world scenarios to assess the UDS layer’s resilience against anomalous data inputs.
Journal Article

Control Strategy for the Removal of NOx from Diesel Engine Exhaust using Hydrocarbon Selective Catalytic Reduction

2008-10-06
2008-01-2486
A unique catalyst developed using high-throughput discovery techniques in collaboration with BASF Corporation and Accelrys, Inc. was investigated at General Motors under simulated diesel engine exhaust feed conditions for the selective catalytic reduction of NOx. A hydrocarbon mixture was used as the reductant to model the multi-component nature of diesel fuel and the catalyst was evaluated over a wide range of temperatures (150 - 550°C) relevant to light-duty diesel exhaust. This report investigates the effects of NOx (as NO or NO2), hydrocarbon concentration level (HC:NOx ratio), oxygen concentration, NO concentration, catalyst space velocity, catalyst temperature, and the co-presence of hydrogen on steady-state NOx reduction activity. Using these results, a control strategy was developed to maximize NOx conversion over the wide-ranging exhaust conditions likely to be encountered in light-duty diesel applications.
Technical Paper

Cylinder-to-Cylinder Variation of Losses in Intake Regions of IC Engines

1998-02-23
981025
Very large scale, 3D, viscous, turbulent flow simulations, involving 840,000 finite volume cells and the complete form of the time-averaged Navier-Stokes equations, were conducted to study the mechanisms responsible for total pressure losses in the entire intake system (inlet duct, plenum, ports, valves, and cylinder) of a straight-six diesel engine. A unique feature of this paper is the inclusion of physical mechanisms responsible for cylinder-to-cylinder variation of flows between different cylinders, namely, the end-cylinder (#1) and the middle cylinder (#3) that is in-line with the inlet duct. Present results are compared with cylinder #2 simulations documented in a recent paper by the Clemson group, Taylor, et al. (1997). A validated comprehensive computational methodology was used to generate grid independent and fully convergent results.
Technical Paper

Design of a Scaled Off-Vehicle Wheel Testing Device for Textile Tread Wear

2009-04-20
2009-01-0562
This paper describes the development of test equipment for determining the wear viability of various lunar wheel tread materials with service lives of up to ten years and 10,000 km. The problem is defined, and concepts are proposed, evaluated, and selected. An abrasive turntable is chosen for simplicity and accuracy of modeling the original wheel configuration. Additionally, the limitations of the test are identified, such as the sensitivity to off-vertical loading, and future work is projected in order to more effectively continue testing. Finally, this paper presents the challenges of collaborative research effort between an undergraduate research team and industry, with government lab representatives as customers
Technical Paper

Developing Domain Ontologies and an Integration Ontology to Support Modeling and Simulation of Next-Generation Ground Vehicle Systems

2022-03-29
2022-01-0361
The development of next-generation ground vehicle systems relies on modeling and simulation to predict vehicle performance and conduct trade studies in the design and acquisition process. In this paper, we describe the development of an ontology suite to support modeling and simulation of next generation military ground vehicles. The ontology suite is intended to address model reuse challenges and increase the shared understanding of ground vehicle system simulations. The ontology suite consists of four domain ontologies: Vehicle operations (VehOps), Operational environment (Env), Ground vehicle architecture (VehArch), and Simulation model ontology (SimMod) and one integration ontology. The separate domain ontologies allow for extensibility, while the integration ontology establishes semantic relationships across the domains ontologies.
Technical Paper

Development of New Turbulence Models and Computational Methods for Automotive Aerodynamics and Heat Transfer

2008-12-02
2008-01-2999
This paper is a review of turbulence models and computational methods that have been produced at Clemson University's Advanced Computational Research Laboratory. The goal of the turbulence model development has been to create physics-based models that are economically feasible and can be used in a competitive environment, where turnaround time is a critical factor. Given this goal, all of the work has been focused on Reynolds-Averaged Navier-Stokes (RANS) simulations in the eddy-viscosity framework with the majority of the turbulence models having three transport equations in addition to mass, momentum, and energy. Several areas have been targeted for improvement in turbulence modeling for complex flows such as those found in motorsports aerodynamics: the effects of streamline curvature and rotation on the turbulence field, laminar-turbulent transition, and separated shear layer rollup and breakdown.
Technical Paper

Evaluating Drivers’ Understanding of Warning Symbols Presented on In-Vehicle Digital Displays Using a Driving Simulator

2023-04-11
2023-01-0790
Since 1989, ISO has published procedures for developing and testing public information symbols (ISO 9186), while the SAE standard for in-vehicle icon comprehension testing (SAE J2830) was first published in 2008. Neither testing method was designed to evaluate the comprehension of symbols in modern vehicles that offer digital instrument cluster interfaces that afford new levels of flexibility to further improve drivers’ understanding of symbols. Using a driving simulator equipped with an eye tracker, this study investigated drivers’ understanding of six automotive symbols presented on in-vehicle displays. Participants included 24 teens, 24 adults, and 24 senior drivers. Symbols were presented in a symbol-only, symbol + short text descriptions, and symbol + long text description conditions. Participants’ symbol comprehension, driving performance, reaction times, and eye glance times were measured.
Technical Paper

Exhaust Particulate Matter Emissions from In-Use Passenger Vehicles Recruited in Three Locations: CRC Project E-24

1999-05-03
1999-01-1545
FTP-UDDS (urban dynamometer driving schedule) exhaust particulate matter (PM) emission rates were determined for 361 light-duty gasoline (LDGV) and 49 diesel passenger vehicles ranging in model year (MY) from 1965 to 1997. LDGVs were recruited into four MY categories. In addition, special effort was made to recruit LDGVs with visible smoke emissions, since these vehicles may be significant contributors to the mobile source PM emission inventory. Both light and heavy-duty diesels where included in the passenger diesel test fleet, which was insufficient in size to separate into the same MY categories as the LDGVs. Vehicles were tested as-received in three areas: Denver, Colorado; San Antonio, Texas; and the South Coast Air Quality Management District, California. The average PM emission rates were 3.3, 79.9, 384 and 558 mg/mi for 1991-97 MY LDGVs, pre-1981 LDGVs, smoking LDGVs and the diesel vehicles, respectively.
X