Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development and Validation of a 1D Model of a Turbocharged V6 Diesel Engine Operating Under Steady-State and Transient Conditions

2005-10-24
2005-01-3857
A one-dimensional engine model was developed for a 4.9-liter V-configuration 6-cylinder turbocharged direction-injection diesel engine. The engine model was first calibrated using the experimental data taken on dynamometer at eight steady-state engine operating conditions. Then the model was extensively validated with four transient dynamometer tests that were conducted mainly with step changes in the engine load, the EGR valve position, the intake throttle position, and/or the VGT vane position. It is shown that the developed model predicts the engine performance and gas dynamics with an error less than 3% in general, both at steady-state and transient engine operating conditions. The validated engine model is very useful in several future applications, such as engine development and optimization, and engine and aftertreatment system integration.
Technical Paper

Thermal Studies in the Exhaust Manifold of a Turbocharged V6 Diesel Engine Operating Under Steady-State Conditions

2006-04-03
2006-01-0688
This study employs experimental and computational methods to investigate the thermal state of the exhaust manifold of a multi-cylinder turbocharged diesel engine operating under steady-state conditions. The local skin temperatures and surface heat fluxes varied significantly throughout the external surface of the manifold. The augmentation of the local heat flux with increasing load and engine speed may be represented solely by the increase in the fuel mass flow rate. The results of the 1D simulation are in good agreement with the measurements of the exit gas temperatures, skin temperatures, and surface heat fluxes.
X