Refine Your Search

Topic

Author

Search Results

Journal Article

A New Method for Measuring Fuel Flow in an Individual Injection in Real Time

2018-04-03
2018-01-0285
Knowledge of fuel mass injected in an individual cycle is important for engine performance and modeling. At the moment, such measurements are not possible on engine or in real time. In this article, a new method using Coriolis flow meters (CFMs) and a new, patented, signal processing technique, known as the Prism, are introduced. CFMs are extensively used for flow measurement both in the automotive industry and further afield and, when coupled with the Prism, have the potential to make these challenging high-speed measurements. A rig-based feasibility study was conducted injecting very small quantities of diesel (3 mg) at pressures of up to 1000 bar at simulated engine speeds of up to 4000 rpm. The results show that these small quantities can in principle be measured. The results also reveal a previously unknown behavior of CFMs when measuring very low flow rates at high speed.
Technical Paper

A Random Forest Algorithmic Approach to Predicting Particulate Emissions from a Highly Boosted GDI Engine

2021-09-05
2021-24-0076
Particulate emissions from gasoline direct injection (GDI) engines continue to be a topic of substantial research interest. Forthcoming regulation both in the USA and the EU will further reduce their emission and drive innovation. Substantial research effort is spent undertaking experiments to understand, characterize, and research particle number (PN) emissions from engines and vehicles. Recent advances in computing power, data storage, and understanding of artificial intelligence algorithms now mean that these are becoming an important tool in engine research. In this work a random forest (RF) algorithm is used for the prediction of PN emissions from a highly boosted (up to 32 bar BMEP) GDI engine. Particle size, concentration, and the accumulation mode geometric standard deviation (GSD) are all predicted by the model. The results are analysed and an in depth study on parameter importance is carried out.
Technical Paper

Burn Rate and Instantaneous Heat Flux Study of Iso-octane, Toluene and Gasoline in a Spray-Guided Direct-Injection Spark-Ignition Engine

2008-04-14
2008-01-0469
The burn rate and the instantaneous in-cylinder heat transfer have been studied experimentally in a spray-guided direct-injection spark-ignition engine with three different fuels: gasoline, iso-octane and toluene. The effects of the ignition timing, air fuel ratio, fuel injection timing and injection strategy (direct injection or port injection) on the burn rate and the in-cylinder heat transfer have been experimentally investigated at a standard mapping point (1500 rpm and 0.521 bar MAP) with the three different fuels. The burn rate analysis was deduced from the in-cylinder pressure measurement. A two-dimensional heat conduction model of the thermocouple was used to calculate the heat flux from the measured surface temperature. An engine thermodynamic simulation code was used to predict the gas-to-wall heat transfer.
Journal Article

Calibration of a TFG Sensor for Heat Flux Measurements in a S.I. Engine

2015-04-14
2015-01-1645
In the development of internal combustion engines, measurements of the heat transfer to the cylinder walls play an important role. These measurements are necessary to provide data for building a model of the heat transfer, which can be used to further develop simulation tools for engine optimization. This research will focus on the Thin Film Gauge (TFG) heat flux sensor. This sensor consists of a platinum RTD (Resistance Temperature Detector) on an insulating Macor® (ceramic) substrate. The sensor has a high frequency response (up to 100 kHz) and is small and robust. These properties make the TFG sensor adequate for measurements in the combustion chamber of an internal combustion engine. To use this sensor, its thermal properties - namely the temperature sensitivity coefficient and the thermal product - must be correctly calibrated. First, different calibration setups with a different temperature range are used to calibrate the temperature sensitivity coefficient of the TFG sensor.
Technical Paper

Cold Flow Simulation of a Dual-Fuel Engine for Diesel-Natural Gas and Diesel-Methanol Fuelling Conditions

2021-04-06
2021-01-0411
In this work, the possibility to perform a cold-flow simulation as a way to improve the accuracy of the starting conditions for a combustion simulation is examined. Specifically, a dual-fuel marine engine running on methanol/diesel and natural gas/diesel fueling conditions is investigated. Dual-fuel engines can provide a short-term solution to cope with the more stringent emission legislations in the maritime sector. Both natural gas and methanol appear to be interesting alternative fuels that can be used as main fuel in these dual-fuel engines. Nevertheless, it is observed that combustion problems occur at part load using these alternative fuels. Therefore, different methods to increase the combustion efficiency at part load are investigated. Numerical simulations prove to be very suitable hereto, as they are an efficient way to study the effect of different parameters on the combustion characteristics.
Technical Paper

Cold Start Particulate Emissions from a Second Generation DI Gasoline Engine

2007-07-23
2007-01-1931
Spray guided Direct Injection Gasoline Engines are a key enabler to reducing CO2 emissions and improving the fuel economy of light duty vehicles. Particulate emissions from these engines have been shown to be lower than from first generation direct injection gasoline engines, but they may still be significantly higher than port fuel injected engines due to the reduced time available for mixture preparation and increased incidence of fuel impingement on the piston crown and combustion chamber surfaces. These factors are particularly severe in the period following a cold start. Both nuclei and accumulation mode particle size and number concentration were measured using a Cambustion differential mobility spectrometer. These data are reported for different coolant temperature intervals during the warm-up period. The bulk composition was determined using thermo-gravimetric analysis, and PM mass fractions are given for different volatility ranges and for elemental carbon.
Technical Paper

Combustion Studies for PFI Hydrogen IC Engines

2007-08-05
2007-01-3610
Interest in alternative fuels is motivated by concerns for greenhouse gas accumulation, air quality, security of energy supply and of course the non-stop increasing crude oil and natural gas prices. Hydrogen usage can be a solution for these problems. Hydrogen plays the role of an energy carrier that has two major advantages: it can be generated from many sources and it is very clean in its use. One end-use technology that can handle hydrogen is the well-known internal combustion engine (ICE). However, before this technology can be put to use, it needs to be able to compete with conventionally fuelled power units. Particularly in terms of specific power output and NOX emissions, development work needs to be done. In the work described in this paper the main focus is on the combustion strategies for high efficiency and low NOx emissions. A comparison is made between lean burn and EGR (exhaust gas recirculation) strategies.
Technical Paper

Comparing Real Driving Emissions from Euro 6d-TEMP Vehicles Running on E0 and E10 Gasoline Blends

2023-10-31
2023-01-1662
Several governments are increasing the blending mandate of renewable fuels to reduce the life-cycle greenhouse gas emissions of the road transport sector. Currently, ethanol is a prominent renewable fuel and is used in low-level blends, such as E10 (10 %v/v ethanol, 90 %v/v gasoline) in many parts of the world. However, the exact concentration of ethanol amongst other renewable fuel components in commercially available fuels can vary and is not known. To understand the impact of the renewable fuel content on the emissions from Euro 6d-TEMP emissions specification vehicles, this paper examines the real-driving emissions (RDE) from four 2020 to 2022 model-year vehicles run on E0 and E10 fuels. CO, CO2, NO, and NO2 were measured through a Portable Emissions Measuring System (PEMS).
Technical Paper

Comparing the Effect of Fuel/Air Interactions in a Modern High-Speed Light-Duty Diesel Engine

2017-09-04
2017-24-0075
Modern diesel cars, fitted with state-of-the-art aftertreatment systems, have the capability to emit extremely low levels of pollutant species at the tailpipe. However, diesel aftertreatment systems can represent a significant cost, packaging and maintenance requirement. Reducing engine-out emissions in order to reduce the scale of the aftertreatment system is therefore a high priority research topic. Engine-out emissions from diesel engines are, to a significant degree, dependent on the detail of fuel/air interactions that occur in-cylinder, both during the injection and combustion events and also due to the induced air motion in and around the bowl prior to injection. In this paper the effect of two different piston bowl shapes are investigated.
Journal Article

Cycle-to-Cycle Variation Analysis of Two-Colour PLIF Temperature Measurements Calibrated with Laser Induced Grating Spectroscopy in a Firing GDI Engine

2019-04-02
2019-01-0722
In-cylinder temperatures and their cyclic variations strongly influence many aspects of internal combustion engine operation, from chemical reaction rates determining the production of NOx and particulate matter to the tendency for auto-ignition leading to knock in spark ignition engines. Spatially resolved measurements of temperature can provide insights into such processes and enable validation of Computational Fluid Dynamics simulations used to model engine performance and guide engine design. This work uses a combination of Two-Colour Planar Laser Induced Fluorescence (TC-PLIF) and Laser Induced Grating Spectroscopy (LIGS) to measure the in-cylinder temperature distributions of a firing optically accessible spark ignition engine. TC-PLIF performs 2-D temperature measurements using fluorescence emission in two different wavelength bands but requires calibration under conditions of known temperature, pressure and composition.
Technical Paper

Demonstrating the Use of Thin Film Gauges for Heat Flux Measurements in ICEs: Measurements on an Inlet Valve in Motored Operation

2016-04-05
2016-01-0641
To optimize internal combustion engines (ICEs), a good understanding of engine operation is essential. The heat transfer from the working gases to the combustion chamber walls plays an important role, not only for the performance, but also for the emissions of the engine. Besides, thermal management of ICEs is becoming more and more important as an additional tool for optimizing efficiency and emission aftertreatment. In contrast little is known about the convective heat transfer inside the combustion chamber due to the complexity of the working processes. Heat transfer measurements inside the combustion chamber pose a challenge in instrumentation due to the harsh environment. Additionally, the heat loss in a spark ignition (SI) engine shows a high temporal and spatial variation. This poses certain requirements on the heat flux sensor. In this paper we examine the heat transfer in a production SI ICE through the use of Thin Film Gauge (TFG) heat flux sensors.
Technical Paper

Effect of Ambient Pressure on Ammonia Sprays Using a Single Hole Injector

2024-04-09
2024-01-2618
Ammonia has received attention as an alternative hydrogen carrier and a potential fuel for thermal propulsion systems with a lower carbon footprint. One strategy for high power density in ammonia applications will be direct injection of liquid ammonia. Understanding the evaporation and mixing processes associated with this is important for model development. Additionally, as a prior step for developing new injectors, it is of interest to understand how a conventional gasoline direct injection (GDI) injector would behave when used for liquid ammonia without any modifications. Pure anhydrous ammonia, in its liquid form, was injected from a single hole GDI injector at a fuel pressure of 150 bar into an optically accessible constant volume chamber filled with nitrogen gas for ammonia spray measurements. The chamber conditions spanned a wide range of pressures from 3 − 15 bar at an increment of 1 bar or 2 bar between the test points.
Technical Paper

Effect of Liquid Break-Up Model Selection on Simulated Diesel Spray and Combustion Characteristics

2021-04-06
2021-01-0546
Accurate modelling for spray vapour fields is critical to enable adequate predictions of spray ignition and combustion characteristics of non-premixed reacting diesel sprays. Spray vapour characteristics are in turn controlled by liquid atomization and the KH-RT liquid jet break-up model is regularly used to predict this: with the KH model used for predicting primary break-up given its definition as a surface wave growth model, and the RT model used for predicting secondary break-up due to it being a drag based, stripping model. This paper investigates how the alteration of the switching position of the KH and RT sub-models within the KH-RT model impacts the resulting vapour field and ignition characteristics. The combustion prediction is handled by the implementation of a 54 species, 269 reaction skeletal mechanism utilising a Well Stirred Reactor model within the Star-CD CFD code.
Technical Paper

Evaluation of Some Important Boundary Conditions for Spray Measurements in a Constant Volume Combustion Chamber

2013-04-08
2013-01-1610
Fuel atomization and combustion at engine-like conditions are complicated and sensitive processes which make it hard to perform quantitative experiments with high precision and reproducibility. A better understanding of the processes can be obtained by controlling the boundary conditions. Variable parameters with an important influence on the sprays include fuel temperature, chamber temperature, injection pressure, gas velocity. Controlling all these parameters in an experimental setup is not evident since a lot of them fluctuate with time or interact with each other. Constant volume combustion chambers, using the pre-combustion method, have already shown to be a useful experimental tool for this kind of research purposes. The obtained quantitative results can in a next step be used to evaluate either multi-dimensional or simplified lower dimensional models.
Technical Paper

Experimental Investigation and Modelling of the In-Cylinder Heat Transfer during Ringing Combustion in an HCCI Engine

2017-03-28
2017-01-0732
Homogeneous Charge Compression Ignition (HCCI) engines can achieve both a high thermal efficiency and near-zero emissions of NOx and soot. However, their maximum attainable load is limited by the occurrence of a ringing combustion. At high loads, the fast combustion rate gives rise to pressure oscillations in the combustion chamber accompanied by a ringing or knocking sound. In this work, it is investigated how these pressure oscillations affect the in-cylinder heat transfer and what the best approach is to model the heat transfer during ringing combustion. The heat transfer is measured with a thermopile heat flux sensor inside a CFR engine converted to HCCI operation. A variation of the mass fuel rate at different compression ratios is performed to measure the heat transfer during three different operating conditions: no, light and severe ringing. The occurrence of ringing increases both the peak heat flux and the total heat loss.
Technical Paper

Fast NGC: A New On-Line Technique for Fuel Flow Measurement

2019-01-15
2019-01-0062
Knowledge of fuel mass injected in an individual cycle is important for engine performance and modelling. Currently direct measurements of fuel flow to individual cylinders of an engine are not possible on-engine or in real-time due to a lack of available appropriate measurement techniques. The objective of this work was to undertake real-time Coriolis fuel flow measurement using GDI injectors on a rig observing fuel mass flow rate within individual fuel injections. This paper evaluates the potential of this technology - combining Coriolis Flow Meters (CFMs) with Prism signal processing together known as Fast Next Generation Coriolis (Fast NGC), and serves as a basis for future transitions on-engine applications. A rig-based feasibility study has been undertaken injecting gasoline through a GDI injector at 150 bar in both single shot mode and at a simulated engine speeds of 1788 and 2978 rpm. The results show that these injections can, in principle, be observed.
Journal Article

High-Speed Characterization of ECN Spray A Using Various Diagnostic Techniques

2013-04-08
2013-01-1616
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. The Engine Combustion Network (ECN) is a worldwide group of institutions using combustion vessels, whose aim is to advance the state of spray and combustion knowledge at engine-relevant conditions. A key activity is the use of spray chamber facilities operated at specific target conditions in order to leverage research capabilities and advanced diagnostics of all ECN participants.
Technical Paper

Ignition System Measurement Techniques and Correlations for Breakdown and Arc Voltages and Currents

2000-03-06
2000-01-0245
The first part of the paper is a brief review of the techniques needed for measuring the voltage and current during the ignition process. These techniques have been used in test rigs and an engine to gain insights into the breakdown and subsequent discharge development. New correlations are presented for breakdown voltage as functions of spark plug gap, gas composition, temperature and pressure. The discharge voltage is affected by the flow, so an elevated pressure flow rig was used to look at the effect of flow and pressure on the discharge voltage history, with different stored energies in the ignition coil. This study led to a model for the discharge voltage history, from which it was possible to deduce the flow velocity through the spark plug gap. Finally, these techniques were applied to a single cylinder, 4-valve, pent-roof combustion chamber SI engine, for determining the cycle-by-cycle variations in velocity through the spark plug at the time of ignition.
Journal Article

Investigation of Combustion Robustness in Catalyst Heating Operation on a Spray Guided DISI Engine, Part II - Measurements of Spray Development, Combustion Imaging and Emissions

2010-04-12
2010-01-0603
In-cylinder spray imaging by Mie scattering has been taken with frame rates up to 27,000 fps, along with high speed video photography of chemiluminescence and soot thermal radiation. Spectroscopic measurements have confirmed the presence of OH*, CH* and C2* emissions lines, and their magnitude relative compared to soot radiation. Filtering for CH* has been used with both the high speed video and a Photo-Multiplier Tube (PMT). The PMT signals have been found to correlate with the rate of heat release derived from in-cylinder pressure measurements. A high power photographic strobe has been used to illuminate the fuel spray. Images show that the fuel spray can strike the ground strap of the spark plug, break up, and a fuel cloud then drifts over and under the strap through the spark plug gap. Tests have conducted at two different spark plug orientations using a single spark strategy.
Journal Article

Isolated Low Temperature Heat Release in Spark Ignition Engines

2023-04-11
2023-01-0235
Low temperature heat release (LTHR) has been of interest to researchers for its potential to mitigate knock in spark ignition (SI) engines and control auto-ignition in advanced compression ignition (ACI) engines. Previous studies have identified and investigated LTHR in both ACI and SI engines before the main high temperature heat release (HTHR) event by appropriately curating the in-cylinder thermal state during compression, or in the case of SI engines, timing the spark discharge late to reveal LTHR (sometimes referred to as pre-spark heat release). In this work, LTHR is demonstrated in isolation from HTHR events. Tests were run on motored single-cylinder engines and inlet air temperatures and pressures were adjusted to realise LTHR from n-heptane and iso-octane (2,2,4-trimethylpentane) without entering the HTHR regime. LTHR was observed for a lean n-heptane-air mixture at inlet temperatures ranging from 60°C to 100°C and inlet pressures of 0.9 bar (absolute).
X