Refine Your Search

Topic

Search Results

Technical Paper

A Heat Transfer Model for Low Temperature Combustion Engines

2018-09-10
2018-01-1662
Low Temperature Combustion is a technology that enables achieving both a higher efficiency and simultaneously lower emissions of NOx and particulate matter. It is a noun for combustion regimes that operate with a lean air-fuel mixture and where the combustion occurs at a low temperature, such as Homogeneous Charge Compression Ignition and Partially Premixed Combustion. In this work a new model is proposed to predict the instantaneous heat flux in engines with Low Temperature Combustion. In-cylinder heat flux measurements were used to construct this model. The new model addresses two shortcomings of the existing heat transfer models already present during motored operation: the phasing of the instantaneous heat flux and the overprediction of the heat flux during the expansion phase. This was achieved by implementing the in-cylinder turbulence in the heat transfer model. The heat transfer during the combustion was taken into account by using the turbulence generated in the burned zone.
Journal Article

A New Method for Measuring Fuel Flow in an Individual Injection in Real Time

2018-04-03
2018-01-0285
Knowledge of fuel mass injected in an individual cycle is important for engine performance and modeling. At the moment, such measurements are not possible on engine or in real time. In this article, a new method using Coriolis flow meters (CFMs) and a new, patented, signal processing technique, known as the Prism, are introduced. CFMs are extensively used for flow measurement both in the automotive industry and further afield and, when coupled with the Prism, have the potential to make these challenging high-speed measurements. A rig-based feasibility study was conducted injecting very small quantities of diesel (3 mg) at pressures of up to 1000 bar at simulated engine speeds of up to 4000 rpm. The results show that these small quantities can in principle be measured. The results also reveal a previously unknown behavior of CFMs when measuring very low flow rates at high speed.
Technical Paper

A Review of the Requirements for Injection Systems and the Effects of Fuel Quality on Particulate Emissions from GDI Engines

2018-09-10
2018-01-1710
Particulate emissions from Gasoline Direct Injection (GDI) engines have been an important topic of recent research interest due to their known environmental effects. This review paper will characterise the influence of different gasoline direct injection fuel systems on particle number (PN) emissions. The findings will be reviewed for engine and vehicle measurements with appropriate driving cycles (especially real driving cycles) to evaluate effects of the fuel injection systems on PN emissions. Recent technological developments alongside the trends of the influence of system pressure and nozzle design on injector tip wetting and deposits will be considered. Besides the engine and fuel system it is known that fuel composition will have an important effect on GDI engine PN emissions. The evaporation qualities of fuels have a substantial influence on mixture preparation, as does the composition of the fuel itself.
Technical Paper

Analysis of Underhood Temperature Fields using Linear Superposition

2017-03-28
2017-01-0138
The analysis of thermal fields in the underhood region is complicated by the complex geometry and the influence of a multitude of different heat sources. This complexity means that running full CFD analyses to predict the thermal field in this region is both computationally expensive and time consuming. A method of predicting the thermal field using linear superposition has been developed in order to analyse the underhood region of a simplified Formula One race car, though the technique is applicable to all vehicles. The use of linear superposition allows accurate predictions of the thermal field within a complex geometry for varying boundary conditions with negligible computational costs once the initial characterisation CFD has been run. A quarter scale, rear end model of a Formula One race car with a simplified internal assembly is considered for analysis, though the technique can also be applied to commercial and industrial vehicles.
Journal Article

Applying Design of Experiments to Determine the Effect of Gas Properties on In-Cylinder Heat Flux in a Motored SI Engine

2012-04-16
2012-01-1209
Models for the convective heat transfer from the combustion gases to the walls inside a spark ignition engine are an important keystone in the simulation tools which are being developed to aid engine optimization. The existing models have, however, been cited to be inaccurate for hydrogen, one of the alternative fuels currently investigated. One possible explanation for this inaccuracy is that the models do not adequately capture the effect of the gas properties. These have never been varied in a wide range because air and ‘classical’ fossil fuels have similar values, but they are significantly different in the case of hydrogen. As a first step towards a fuel independent heat transfer model, we have investigated the effect of the gas properties on the heat flux in a spark ignition engine.
Technical Paper

Assessment of Empirical Heat Transfer Models for a CFR Engine Operated in HCCI Mode

2015-04-14
2015-01-1750
Homogeneous charge compression ignition (HCCI) engines are a promising alternative to traditional spark- and compression-ignition engines, due to their high thermal efficiency and near-zero emissions of NOx and soot. Simulation software is an essential tool in the development and optimization of these engines. The heat transfer submodel used in simulation software has a large influence on the accuracy of the simulation results, due to its significant effect on the combustion. In this work several empirical heat transfer models are assessed on their ability to accurately predict the heat flux in a CFR engine during HCCI operation. Models are investigated that are developed for traditional spark- and compression-ignition engines such as those from Annand [1], Woschni [2] and Hohenberg [3] and also models developed for HCCI engines such as those from Chang et al. [4] and Hensel et al. [5].
Technical Paper

Burn Rate and Instantaneous Heat Flux Study of Iso-octane, Toluene and Gasoline in a Spray-Guided Direct-Injection Spark-Ignition Engine

2008-04-14
2008-01-0469
The burn rate and the instantaneous in-cylinder heat transfer have been studied experimentally in a spray-guided direct-injection spark-ignition engine with three different fuels: gasoline, iso-octane and toluene. The effects of the ignition timing, air fuel ratio, fuel injection timing and injection strategy (direct injection or port injection) on the burn rate and the in-cylinder heat transfer have been experimentally investigated at a standard mapping point (1500 rpm and 0.521 bar MAP) with the three different fuels. The burn rate analysis was deduced from the in-cylinder pressure measurement. A two-dimensional heat conduction model of the thermocouple was used to calculate the heat flux from the measured surface temperature. An engine thermodynamic simulation code was used to predict the gas-to-wall heat transfer.
Journal Article

Calibration of a TFG Sensor for Heat Flux Measurements in a S.I. Engine

2015-04-14
2015-01-1645
In the development of internal combustion engines, measurements of the heat transfer to the cylinder walls play an important role. These measurements are necessary to provide data for building a model of the heat transfer, which can be used to further develop simulation tools for engine optimization. This research will focus on the Thin Film Gauge (TFG) heat flux sensor. This sensor consists of a platinum RTD (Resistance Temperature Detector) on an insulating Macor® (ceramic) substrate. The sensor has a high frequency response (up to 100 kHz) and is small and robust. These properties make the TFG sensor adequate for measurements in the combustion chamber of an internal combustion engine. To use this sensor, its thermal properties - namely the temperature sensitivity coefficient and the thermal product - must be correctly calibrated. First, different calibration setups with a different temperature range are used to calibrate the temperature sensitivity coefficient of the TFG sensor.
Technical Paper

Combustion Imaging and Analysis in a Gasoline Direct Injection Engine

2004-03-08
2004-01-0045
A single cylinder Direct Injection Spark Ignition (DISI) engine with optical access has been used for combustion studies with both early injection and late injection for stratified charge operation. Cylinder pressure records have been used for combustion analysis that has been synchronised with the imaging. A high speed cine camera has been used for imaging combustion within a cycle, while a CCD camera has been used for imaging at fixed crank angles, so as to obtain information on cycle-by-cycle variations. The CCD images have also been analysed to give information on the quantity of soot present during combustion. Tests have been conducted with a reference unleaded gasoline (ULG), and pure fuel components: iso-octane (a representative alkane), and toluene (a representative aromatic). The results show diffusion-controlled combustion occurring in so-called homogeneous combustion with early injection.
Technical Paper

Demonstrating the Use of Thin Film Gauges for Heat Flux Measurements in ICEs: Measurements on an Inlet Valve in Motored Operation

2016-04-05
2016-01-0641
To optimize internal combustion engines (ICEs), a good understanding of engine operation is essential. The heat transfer from the working gases to the combustion chamber walls plays an important role, not only for the performance, but also for the emissions of the engine. Besides, thermal management of ICEs is becoming more and more important as an additional tool for optimizing efficiency and emission aftertreatment. In contrast little is known about the convective heat transfer inside the combustion chamber due to the complexity of the working processes. Heat transfer measurements inside the combustion chamber pose a challenge in instrumentation due to the harsh environment. Additionally, the heat loss in a spark ignition (SI) engine shows a high temporal and spatial variation. This poses certain requirements on the heat flux sensor. In this paper we examine the heat transfer in a production SI ICE through the use of Thin Film Gauge (TFG) heat flux sensors.
Technical Paper

Design of a Fast Responding Start-Up Mechanism for Bi-Propellant Fueled Engine for Miniature UAV Applications

2013-09-17
2013-01-2305
In this work a new design of a liquid fuelled combustion engine is proposed for small and light weight unmanned air vehicles (<10kg and 15-200N thrust). Ethanol and gasoline were selected as the potential fuels while pressurized air and hydrogen peroxide were used as the oxidizer. The engine combines features of both a common rocket and turbojet engine. The main features of the engine are the restart ability during flight, low cost, easy manufacturability, light weight, long operation time and high durability. The main difficulties that come along with this engine are the need for proper engine cooling (long term operation) and start-up ability at atmospheric conditions. The low temperatures and injection pressures are not favorable for the fuel atomization and ignition. The paper focuses on the design on low pressure injectors and a start-up mechanism for micro UAV's without the use of a large amount of additional fueling circuits or components.
Technical Paper

Development and Validation of a Knock Prediction Model for Methanol-Fuelled SI Engines

2013-04-08
2013-01-1312
Knock is one of the main factors limiting the efficiency of spark-ignition engines. The introduction of alternative fuels with elevated knock resistance could help to mitigate knock concerns. Alcohols are prime candidate fuels and a model that can accurately predict their autoignition behavior under varying engine operating conditions would be of great value to engine designers. The current work aims to develop such a model for neat methanol. First, an autoignition delay time correlation is developed based on chemical kinetics calculations. Subsequently, this correlation is used in a knock integral model that is implemented in a two-zone engine code. The predictive performance of the resulting model is validated through comparison against experimental measurements on a CFR engine for a range of compression ratios, loads, ignition timings and equivalence ratios.
Technical Paper

Dynamic Particulate Measurements from a DISI Vehicle: A Comparison of DMS500, ELPI, CPC and PASS

2006-04-03
2006-01-1077
A Cambustion Differential Mobility Spectrometer (DMS500), Dekati Electrical Low Pressure Impactor (ELPI), TSI Condensation Particle Counter (CPC) and AVL Photo-Acoustic Soot Sensor (PASS) were compared for measurements of emitted Particulate Matter (PM) from a Direct Injection Spark Ignition (DISI) vehicle on the New European Drive Cycle (NEDC) and at steady speed operating points. The exhaust was diluted in a Constant Volume Sampler (CVS) before being measured. Transient size spectral data from the DMS500 and ELPI is presented. PM Number rate and total PM number emissions are presented for the DMS500, ELPI and CPC. The DMS500 and ELPI data are post-processed for PM mass, and presented with data from the PASS. The instrument responses were correlated against each other. Qualitative agreement was generally found between all instruments. The agreement was closer for PM mass measurements than for measurements of PM number.
Technical Paper

Effect of Ambient Pressure on Ammonia Sprays Using a Single Hole Injector

2024-04-09
2024-01-2618
Ammonia has received attention as an alternative hydrogen carrier and a potential fuel for thermal propulsion systems with a lower carbon footprint. One strategy for high power density in ammonia applications will be direct injection of liquid ammonia. Understanding the evaporation and mixing processes associated with this is important for model development. Additionally, as a prior step for developing new injectors, it is of interest to understand how a conventional gasoline direct injection (GDI) injector would behave when used for liquid ammonia without any modifications. Pure anhydrous ammonia, in its liquid form, was injected from a single hole GDI injector at a fuel pressure of 150 bar into an optically accessible constant volume chamber filled with nitrogen gas for ammonia spray measurements. The chamber conditions spanned a wide range of pressures from 3 − 15 bar at an increment of 1 bar or 2 bar between the test points.
Technical Paper

Effect of Intake Conditions (Temperature, Pressure and EGR) on the Operation of a Dual-Fuel Marine Engine with Methanol

2023-08-28
2023-24-0046
In the upcoming decade sustainable powertrain technologies will seek for market entrance in the transport sector. One promising solution is the utilization of dual-fuel engines using renewable methanol ignited by a pilot diesel fuel. This approach allows the displacement of a significant portion of fossil diesel, thereby reducing greenhouse gas emissions. Additionally, this technology is, next to newbuilds, suited for retrofitting existing engines, while maintaining high efficiencies and lowering engine-out emissions. Various researchers have experimentally tested the effects of replacing diesel by methanol and have reported different boundaries for substituting diesel by methanol, including misfire, partial burn, knock and pre-ignition. However, little research has been conducted to explore ways to extend these substitution limits.
Technical Paper

Effect of Thermocouple Size on the Measurement of Exhaust Gas Temperature in Internal Combustion Engines

2018-09-10
2018-01-1765
Accurate measurement of exhaust gas temperature in internal combustion engines is essential for a wide variety of monitoring and design purposes. Typically these measurements are made with thermocouples, which may vary in size from 0.05 mm (for fast response applications) to a few millimetres. In this work, the exhaust of a single cylinder diesel engine has been instrumented both with a fast-response probe (comprising of a 50.8 μm, 127 μm and a 254 μm thermocouple) and a standard 3 mm sheathed thermocouple in order to assess the performance of these sensors at two speed/load conditions. The experimental results show that the measured time-average exhaust temperature is dependent on the sensor size, with the smaller thermocouples indicating a lower average temperature for both speed/load conditions. Subject to operating conditions, measurement discrepancies of up to ~80 K have been observed between the different thermocouples used.
Technical Paper

Evaluation of Wall Heat Flux Models for Full Cycle CFD Simulation of Internal Combustion Engines under Motoring Operation

2017-09-04
2017-24-0032
The present work details a study of the heat flux through the walls of an internal combustion engine. The determination of this heat flux is an important aspect in engine optimization, as it influences the power, efficiency and the emissions of the engine. Therefore, a set of simulation tools in the OpenFOAM® software has been developed, that allows the calculation of the heat transfer through engine walls for ICEs. Normal practice in these types of engine simulations is to apply a wall function model to calculate the heat flux, rather than resolving the complete thermo-viscous boundary layer, and perform simulations of the closed engine cycle. When dealing with a complex engine, this methodology will reduce the overall computational cost. It however increases the need to rely on assumptions on both the initial flow field and the behavior in the near-wall region.
Technical Paper

Evaluation of a Flow-Field-Based Heat Transfer Model for Premixed Spark-Ignition Engines on Hydrogen

2013-04-08
2013-01-0225
Hydrogen-fuelled internal combustion engines are an attractive alternative to current drive trains, because a high efficiency is possible throughout the load range and only emissions of oxides of nitrogen (NOx) can be emitted. The latter is an important constraint for power and efficiency optimization. Optimizing the engine with experiments is time consuming, so thermodynamic models of the engine cycle are being developed to speed up this process. Such a model has to accurately predict the heat transfer in the engine, because it affects all optimization targets. The standard heat transfer models (Annand and Woschni) have already been cited to be inaccurate for hydrogen engines. However, little work has been devoted to the evaluation of the flow-field based heat transfer model, which is the topic of this paper. The model is evaluated with measurements that focus on the effect of the fuel, under motored and fired operation.
Technical Paper

Experimental Investigation and Modelling of the In-Cylinder Heat Transfer during Ringing Combustion in an HCCI Engine

2017-03-28
2017-01-0732
Homogeneous Charge Compression Ignition (HCCI) engines can achieve both a high thermal efficiency and near-zero emissions of NOx and soot. However, their maximum attainable load is limited by the occurrence of a ringing combustion. At high loads, the fast combustion rate gives rise to pressure oscillations in the combustion chamber accompanied by a ringing or knocking sound. In this work, it is investigated how these pressure oscillations affect the in-cylinder heat transfer and what the best approach is to model the heat transfer during ringing combustion. The heat transfer is measured with a thermopile heat flux sensor inside a CFR engine converted to HCCI operation. A variation of the mass fuel rate at different compression ratios is performed to measure the heat transfer during three different operating conditions: no, light and severe ringing. The occurrence of ringing increases both the peak heat flux and the total heat loss.
Technical Paper

ICICLE: A Model for Glaciated & Mixed Phase Icing for Application to Aircraft Engines

2019-06-10
2019-01-1969
High altitude ice crystals can pose a threat to aircraft engine compression and combustion systems. Cases of engine damage, surge and rollback have been recorded in recent years, believed due to ice crystals partially melting and accreting on static surfaces (stators, endwalls and ducting). The increased awareness and understanding of this phenomenon has resulted in the extension of icing certification requirements to include glaciated and mixed phase conditions. Developing semi-empirical models is a cost effective way of enabling certification, and providing simple design rules for next generation engines. A comprehensive ice crystal icing model is presented in this paper, the Ice Crystal Icing ComputationaL Environment (ICICLE). It is modular in design, comprising a baseline code consisting of an axisymmetric or 2D planar flowfield solution, Lagrangian particle tracking, air-particle heat transfer and phase change, and surface interactions (bouncing, fragmentation, sticking).
X