Refine Your Search

Topic

Author

Search Results

Technical Paper

A Comparison of Virtual Sensors for Combustion Parameter Prediction of Gas Engines Based on Knock Sensor Signals

2023-04-11
2023-01-0434
Precise prediction of combustion parameters such as peak firing pressure (PFP) or crank angle of 50% burned mass fraction (MFB50) is essential for optimal engine control. These quantities are commonly determined from in-cylinder pressure sensor signals and are crucial to reach high efficiencies and low emissions. Highly accurate in-cylinder pressure sensors are only applied to test rig engines due to their high cost, limited durability and special installation conditions. Therefore, alternative approaches which employ virtual sensing based on signals from non-intrusive sensors retrieved from common knock sensors are of great interest. This paper presents a comprehensive comparison of selected approaches from literature, as well as adjusted or further developed methods to determine engine combustion parameters based on knock sensor signals. All methods are evaluated on three different engines and two different sensor positions.
Technical Paper

A New Approach to Occupant Simulation Through the Coupling of PC-Crash and MADYMO

1999-03-01
1999-01-0444
During recent years the accident simulation program PC-Crash was developed. This software simulates vehicle movement before, during and after the impact, using 3D vehicle and scene models. When reconstructing car accidents, quite often questions arise regarding occupant movement and loading. Especially important is the influence of different types of restraint systems on the occupant. MADYMO® is a software tool which was developed by TNO in the Netherlands and which is well known in the automotive industry for the simulation of occupant movement. It allows the simulation of all kinds of modern restraint systems such as airbags and seatbelts with and without pretensioners. As the software is used in the automotive industry quite extensively, a huge validated database of dummy and human models is available. Since MADYMO® demands the setup of quite complicated input files, its use normally requires a high level of expertise.
Technical Paper

A Smart Icing Detection System for Any Location on the Outer Aircraft Surface

2019-06-10
2019-01-1931
Given approximately one million small and light aircraft in operation worldwide, icing detection and icing quantification of in-flight icing are still an open research topic. Despite technical means are available to de-ice on ground, there is a lack of a suitable control system based on sensor data to de-ice while the aircraft is airborne. Most often, it is still task of the pilot to visually inspect the icing status of the airfoil and/or other critical parts of the aircraft such as engine air intakes, which distracts the flight crew from flying the aircraft especially in IMC conditions. Based on preliminary simulation and tests in 2014 in a collaborative research project lasting from 2015 until 2018, the technology of energy self-sustaining, wireless, self-adhesive smart sensors for industrial sensing in an aerodynamically critical environment (i.e. wind turbines) was further investigated to fulfil general aviation requirements.
Technical Paper

Advances in Automated Coupling of CFD and Radiation

2008-04-14
2008-01-0389
Research and development engineers have paid much attention to coupling commercial tools for examining complex systems, recently. The purpose of this paper is to demonstrate an automated coupling of a CFD program with a commercial thermal radiation tool. Based on a previous work the coupling behaviour of a parallelized CFD code is being demonstrated. The automation thus speeds up the calculation procedure even for transient simulations not relying on codes of just one vendor. The simulation is then compared with measurements of temperatures of an actual SUV and conclusions are drawn.
Technical Paper

Automatic Optimization of Pre-Impact Parameters Using Post Impact Trajectories and Rest Positions

1998-02-23
980373
When vehicle to vehicle collisions are analyzed using a discrete kinetic time forward simulation, several simulation runs have to be performed, to find a solution, where post impact trajectories and rest positions correspond with the real accident. This paper describes in detail a method to vary the pre-impact parameters automatically and to evaluate the simulation results. In a first step the different pre-impact parameters are discussed. Their influence on the impact and the post impact movement is shown. Furthermore the necessary specifications to define the post crash movement are presented. The necessity to define tire marks and rest positions of the vehicles involved is outlined. An effective evaluation criteria is derived, which is used to calculate a simulation error. This error is then used as a target function to control the optimization process. Two different optimization strategies are presented.
Technical Paper

Big Data-Based Driving Pattern Clustering and Evaluation in Combination with Driving Circumstances

2018-04-03
2018-01-1087
Car driver’s behavior and its influence on driving characteristics play an increasing role in the development of modern vehicles, e.g. in view of efficient powertrain control and implementation of driving assistance functions. In addition, knowledge about actual driving style can provide feedback to the driver and support efficient driving or even safety-related measures. Driving patterns are caused not only by the driver, but also influenced by road characteristics, environmental boundary conditions and other traffic participants. Thus, it is necessary to take the driving circumstances into account, when driving patterns are studied. This work proposes a methodology to cluster and evaluate driving patterns under consideration of vehicle-related parameters (e.g. acceleration and jerk) in combination with additional influencing factors, e.g. road style and inclination. Firstly, segmentation of the trip in distance series is performed to generate micro cycles.
Technical Paper

Concepts for Mechanical Abuse Testing of High-Voltage Batteries

2012-04-16
2012-01-0124
Currently lithium-batteries are the most promising electrical-energy storage technology in fully-electric and hybrid vehicles. A crashworthy battery-design is among the numerous challenges development of electric-vehicles has to face. Besides of safe normal operation, the battery-design shall provide marginal threat to human health and environment in case of mechanical damage. Numerous mechanical abuse-tests were performed to identify load limits and the battery's response to damage. Cost-efficient testing is provided by taking into account that the battery-system's response to abuse might already be observed at a lower integration-level, not requiring testing of the entire pack. The most feasible tests and configurations were compiled and discussed. Adaptions of and additions to existing requirements and test-procedures as defined in standards are pointed out. Critical conditions that can occur during and after testing set new requirements to labs and test-rigs.
Technical Paper

Development of a Virtual Sensor to Predict Cylinder Pressure Signal Based on a Knock Sensor Signal

2022-03-29
2022-01-0627
Virtual sensing refers to the processing of desired physical data based on measured values. Virtual sensors can be applied not only to obtain physical quantities which cannot be measured or can only be measured at an unreasonable expense but also to reduce the number of physical sensors and thus lower costs. In the field of spark ignited internal combustion engines, the virtual sensing approach may be used to predict the cylinder pressure signal (or characteristic pressure values) based on the acceleration signal of a knock sensor. This paper presents a method for obtaining the cylinder pressure signal in the high-pressure phase of an internal combustion engine based on the measured acceleration signal of a knock sensor. The approach employs a partial differential equation to represent the physical transfer function between the measured signal and the desired pressure. A procedure to fit the modeling constants is described using the example of a large gas engine.
Journal Article

Elaborate Measuring System for Sensitivity Analyses and In-Depth Investigations of a Squealing Brake System

2012-06-13
2012-01-1541
Brake squeal is an elusive problem which has been the subject of investigation for many decades, but there is still a lack of knowledge regarding the excitation mechanisms. New vehicle solutions, for instance the electrical vehicle, will have a lower general noise level. Thus, silent brake systems will gain in importance. To obtain such systems, in-depth investigations of the brake disc/pad contact are required. For these investigations a new sensor has been developed. The guide pins of the caliper are replaced by modified ones which measure the friction force. Additionally, eddy current sensors are installed for contact-free measurement of the pad movement. Furthermore, triaxial acceleration sensors are mounted in the disc vents. Thus, it is possible to evaluate the operational deflection shapes of the disc. Next, an extensive sensibility analysis is performed. Parameters such as environmental conditions, friction coefficient and many others are thereby changed.
Technical Paper

Evaluation of Methods for Identification of Driving Styles and Simulation-Based Analysis of their Influence on Energy Consumption on the Example of a Hybrid Drive Train

2020-04-14
2020-01-0443
Due to current progresses in the field of driver assistance systems and the continuously growing electrification of vehicle drive trains, the evaluation of driver behavior has become an important part in the development process of modern cars. Findings from driver analyses are used for the creation of individual profiles, which can be permanently adapted due to ongoing data processing. A benefit of data-based dynamic control systems lies in the possibility to individually configure the vehicle behavior for a specific driver, which can contribute to increasing customer acceptance and satisfaction. In this way, an optimization of the control behavior between driver and vehicle and the resulting mutual system learning and -adjustment hold great potential for improvements in driving behavior, safety and energy consumption.
Technical Paper

Holistic Approach for Improved Safety Including a Proposal of New Virtual Test Conditions of Small Electric Vehicles

2015-04-14
2015-01-0571
In the next 20 years the share of small electric vehicles (SEVs) will increase especially in urban areas. SEVs show distinctive design differences compared to traditional vehicles. Thus the consequences of impacts of SEVs with vulnerable road users (VRUs) and other vehicles will be different from traditional collisions. No assessment concerning vehicle safety is defined for vehicles within European L7e category currently. Focus of the elaborated methodology is to define appropriate test scenarios for this vehicle category to be used within a virtual tool chain. A virtual tool chain has to be defined for the realization of a guideline of virtual certification. The derivation and development of new test conditions for SEVs are described and are the main focus of this work. As key methodology a prospective methodical analysis under consideration of future aspects like pre-crash safety systems is applied.
Technical Paper

How to Use PC-CRASH to Simulate Rollover Crashes

2004-03-08
2004-01-0341
Due to the increasing number of minivans and sport utility vehicles, rollovers have become more significant. As a result, various accident reconstruction programs have been developed to address this issue. To reconstruct rollover crashes, various requirements have to be fulfilled. These consist of: providing a simple method that is able to model three dimensional environments that often play a major role in rollovers. including suspension, tire and collision models must be provided. This is particularily important in the rollover initiation phase. including proper vehicle geometry and contact stiffness must be available. These are important for simulation of body contacts that affect the vehicle motion. This study focuses on one program, PC-CRASH. This program was developed to allow simulations of vehicle 3-dimensional movements before, during and after the impact. The study also discusses the physical background of the models, their capabilities as well as their limitations.
Technical Paper

Identification and Verification of Attack-Tree Threat Models in Connected Vehicles

2022-12-22
2022-01-7087
As a result of the ever-increasing application of cyber-physical components in the automotive industry, cybersecurity has become an urgent topic. Adapting technologies and communication protocols like Ethernet and WiFi in connected vehicles yields many attack scenarios. Consequently, ISO/SAE 21434 and UN R155 (2021) define a standard and regulatory framework for automotive cybersecurity, Both documents follow a risk management-based approach and require a threat modeling methodology for risk analysis and identification. Such a threat modeling methodology must conform to the Threat Analysis and Risk Assessment (TARA) framework of ISO/SAE 21434. Conversely, existing threat modeling methods enumerate isolated threats disregarding the vehicle’s design and connections. Consequently, they neglect the role of attack paths from a vehicle’s interfaces to its assets.
Technical Paper

Ion Current Comparison in Small, Fast Running Gasoline Engines for Non-Automotive Applications

2018-10-30
2018-32-0077
Small engines for non-automotive applications include 2-stroke and 4-stroke gasoline engine concepts which have a reduced number of sensors due to cost and packaging constraints. In order to cope with future emission regulations, more sophisticated engine control and monitoring becomes mandatory. Therefore, a cost-effective way has to be found to gain maximum information from the existing sensors and actuators. Due to an increasing bio-fuel share in the market, the detection of bio-fuel content is necessary to guarantee a stable combustion by adapting the injection and ignition control strategy. Meaningful information about the combustion can be retrieved from combustion chamber ion current measurements. This paper proposes a general overview of combustion process monitoring in different engine concepts by measuring the ion current during combustion.
Journal Article

New and Innovative Combustion Systems for the H2-ICE: Compression Ignition and Combined Processes

2009-04-20
2009-01-1421
Hydrogen nowadays is considered one promising energy carrier for future mobility scenarios. Its application as a fuel in ICEs greatly benefits from Direct Injection (DI) strategies, which help to reduce the disadvantages of PFI systems such as air displacement effects, knocking, backfiring and low power density. In SI-engines one appropriate way to increase efficiency is the reduction of wall heat losses by jet- and/or wall-guided mixture formation systems. In theory, Compression Ignition (CI) systems employing a diffusion type of combustion allow for a significant raise in compression ratio and, thus, are likely to excel the SI concept in terms of efficiency. The following paper deals with results obtained from investigations on H2 Compression-Ignition (H2-CI) combustion systems by employing both thermodynamic research engines and 3D CFD simulation.
Technical Paper

Potential for Particulate Reduction by Use of eFuels in MPFI Engines

2023-10-24
2023-01-1848
Currently, emission regulations for the LVs using standard spark ignited ICEs considering only gaseous pollutants, just as CO, HC and NOx. Following the upcoming legislation for personal vehicles sector, the LVs might also include limits of PN and PM. Regarding fuel injection strategies, the MPFI which was previously excluded from particulate control will be incorporated into the new regulation [1]. In terms of social harm, there will be a necessity to reduce engine particulate emissions, as they are known for being carcinogenic substances [2, 3, 4]. Generally, the smaller the particulate diameter, the more critical are the damages for human health therefore, the correct determination of PN and particulate diameter is essential. Beside future challenges for reducing and controlling particulates, the reduction of fossil fuel usage is also an imminent target, being the replacement by eFuels one of the most promising alternatives.
Technical Paper

Precise Dummy Head Trajectories in Crash Tests based on Fusion of Optical and Electrical Data: Influence of Sensor Errors and Initial Values

2015-04-14
2015-01-1442
Precise three-dimensional dummy head trajectories during crash tests are very important for vehicle safety development. To determine precise trajectories with a standard deviation of approximately 5 millimeters, three-dimensional video analysis is an approved method. Therefore the tracked body is to be seen on at least two cameras during the whole crash term, which is often not given (e.g. head dips into the airbag). This non-continuity problem of video analysis is surmounted by numerical integration of differential un-interrupted electrical rotation and acceleration sensor signals mounted into the tracked body. Problems of this approach are unknown sensor calibration errors and unknown initial conditions, which result in trajectory deviations above 10 centimeters.
Technical Paper

Robot-Based Fast Charging of Electric Vehicles

2019-04-02
2019-01-0869
Automated, conductive charging systems enable both, the transmission of high charging power for long electric driving distances as well as comfortable and safe charging processes. Especially by the use of heavy and unhandy cables for fast charging, these systems offer user friendly vehicle charging - in particularly in combination with autonomously driving and parking vehicles. This paper deals with the definition of requirements for automated conductive charging stations with standard charging connectors and vehicle inlets and the development of a fully-automated charging robot for electric and plug-in hybrid vehicles. In cooperation with the project partners BMW AG, MAGNA Steyr Engineering, KEBA AG and the Institute of Automotive Engineering at Graz University of Technology, the development and implementation of the prototype took place in the course of a governmental funded research project titled “Comfortable Mobility by Technology Integration (KoMoT)”.
Technical Paper

Subjective Evaluation of Advanced Driver Assistance by Evaluation of Standardized Driving Maneuvers

2013-04-08
2013-01-0724
Advanced Driver Assistance Systems (ADAS) for collision avoidance/mitigation have already demonstrated their benefit on vehicle safety. Often those systems have an additional functionality for comfort to assist the driver in non-critical driving. The verification of ADAS functionality using different test scenarios is currently investigated in many different projects worldwide. A harmonization of test scenarios and evaluation criteria is not yet accomplished. Often, these test scenarios focus on objective collision avoidance and not on the subjective interaction between driver and vehicle. The present study deals with the development of an experimental validation plan for the systems Automatic Cruise Control (ACC), Lane Departure Warning (LDW) and Lane Keeping Assist (LKA). Standardized driving maneuvers with two or more vehicles equipped with synchronized measurement are performed by professional test drivers.
Journal Article

Sulfur Poisoning of a NOx Storage Catalyst - A Comprehensive Modelling Approach

2016-04-05
2016-01-0964
This paper describes the development of a 0-D-sulfur poisoning model for a NOx storage catalyst (NSC). The model was developed and calibrated using findings and data obtained from a passenger car diesel engine used on testbed. Based on an empirical approach, the developed model is able to predict not only the lower sulfur adsorption with increasing temperature and therefore the higher SOx (SO2 and SO3) slip after NSC, but also the sulfur saturation with increasing sulfur loading, resulting in a decrease of the sulfur adsorption rate with ongoing sulfation. Furthermore, the 0-D sulfur poisoning model was integrated into an existing 1-D NOx storage catalyst kinetic model. The combination of the two models results in an “EAS Model” (exhaust aftertreatment system) able to predict the deterioration of NOx-storage in a NSC with increasing sulfation level, exhibiting higher NOx-emissions after the NSC once it is poisoned.
X