Refine Your Search

Topic

Author

Search Results

Technical Paper

3d-Elastohydrodynamic Simulation Model for Structure-Borne Noise Analyses of a DI Diesel Engine

2016-06-15
2016-01-1854
The present article is concerned with the investigation of the engine noise induced by the piston slap of an actual passenger car Diesel engine. The focus is put on the coherence of piston secondary movement, impact of the piston on the cylinder liner, generated structure-borne noise excitation of the engine structure and the occurring acceleration on the engine surface. Additionally, the influence of a varying piston-pin offset and piston clearance is evaluated. The analyses are conducted using an elastohydrodynamic multi-body simulation model, taking into account geometry, stiffness and mass information of the single components as well as considering elastic and hydrodynamic behavior of the piston-liner contact. A detailed description of the simulation model will be introduced in the article. The obtained results illustrate the piston secondary motion and the related structure-borne noise on the engine surface for several piston-pin offsets and piston clearances.
Technical Paper

A Comparison of Virtual Sensors for Combustion Parameter Prediction of Gas Engines Based on Knock Sensor Signals

2023-04-11
2023-01-0434
Precise prediction of combustion parameters such as peak firing pressure (PFP) or crank angle of 50% burned mass fraction (MFB50) is essential for optimal engine control. These quantities are commonly determined from in-cylinder pressure sensor signals and are crucial to reach high efficiencies and low emissions. Highly accurate in-cylinder pressure sensors are only applied to test rig engines due to their high cost, limited durability and special installation conditions. Therefore, alternative approaches which employ virtual sensing based on signals from non-intrusive sensors retrieved from common knock sensors are of great interest. This paper presents a comprehensive comparison of selected approaches from literature, as well as adjusted or further developed methods to determine engine combustion parameters based on knock sensor signals. All methods are evaluated on three different engines and two different sensor positions.
Journal Article

A New Approach for the Reduction of Aerodynamic Drag of Long-Distance Transportation Vehicles

2013-09-24
2013-01-2414
The optimization of aerodynamic drag represents an important research area for the fuel consumption reduction of heavy duty commercial vehicles. Today's design of tractor-trailers is significantly influenced by legal conditions regarding the vehicle dimensions and the provision of a maximum transportation volume. These boundary conditions lead to brick-shaped trailer outer geometries, especially at the rear ends. That is the reason why the investigations of aerodynamic optimization of commercial vehicle trailers are predominantly restricted to detail measures up to now. The present publication treats the aerodynamic characteristics of general modifications on the outer contour of long-distance haulage trailers in regard of reducing the drag resistance and, thus, potentially also the fuel consumption in highway traffic. A new approach for the realization of a variable outer contour of trailers provides the possibility to adjust the rear end to an aerodynamically optimized shape.
Technical Paper

A Priori Analysis of Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2020-09-30
2020-01-1518
The absence of combustion engine noise pushes increasingly attention to the sound generation from other, even much weaker, sources in the acoustic design of electric vehicles. The present work focusses on the numerical computation of flow induced noise, typically emerging in components of flow guiding devices in electro-mobile applications. The method of Large-Eddy Simulation (LES) represents a powerful technique for capturing most part of the turbulent fluctuating motion, which qualifies this approach as a highly reliable candidate for providing a sufficiently accurate level of description of the flow induced generation of sound. Considering the generic test configuration of turbulent pipe flow, the present study investigates in particular the scope and the limits of incompressible Large-Eddy Simulation in predicting the evolution of turbulent sound sources to be supplied as source terms into the acoustic analogy of Lighthill.
Technical Paper

A holistic Development Method Based on AVL FRISC as Enabler for CO2 Reduction with Focus on Low Viscosity Oils

2020-04-14
2020-01-1060
To achieve future fleet CO2 emission targets, all powertrain types, including those with internal combustion engines, need to achieve higher efficiency. Next to others the reduction of friction is one contributor to increase powertrain efficiency. The piston bore interface (PBI) accounts for up to 50 % of the total engine friction losses [1]. Optimizations in this area combined with the use of low viscosity oil, which can reduce the friction of further engine sub-systems, will therefore have a high positive impact. To assess the friction of the PBI whilst considering cross effects of other relevant parameters for mechanical function (e.g. blow-by & wear) and emissions (e.g. oil consumption) AVL has established a holistic development method based around the AVL FRISC (FRIction Single Cylinder) engine with a floating liner measurement concept.
Journal Article

Advantages and Challenges of Lean Operation of Two-Stroke Engines for Hand-Held Power Tools

2014-11-11
2014-32-0009
One of the most significant current discussions worldwide is the anthropogenic climate change accompanying fossil fuel consumption. Sustainable development in all fields of combustion engines is required with the principal objective to enhance efficiency. This certainly concerns the field of hand-held power tools as well. Today, two-stroke SI engines equipped with a carburetor are the most widely used propulsion technology in hand-held power tools like chain saws and grass trimmers. To date, research tended to focus on two-stroke engines with rich mixture setting. In this paper the advantages and challenges of leaner and/or lean operation are discussed. Experimental investigations regarding the influence of equivalence ratio on emissions, fuel consumption and power have been performed. Accompanying 3D-CFD simulations support the experiments in order to gain insight into these complex processes. The investigations concentrate on two different mixture formation processes, i.e.
Technical Paper

Aero-Acoustic Source Terms from Large-Eddy Simulation in Turbulent Pipe Flow

2022-06-15
2022-01-0937
In the acoustic design of flow guiding components, novel simulation concepts for predicting relevant sound sources in the early design state become increasingly important. This requires accurate numerical methods to describe the involved phenomena. The present study computationally investigates the flow-induced aeroacoustic sound sources, generated in turbulent pipe flow. The analysis follows a hybrid approach, where the acoustic sound field is predicted separately from the underlying turbulent flow field, supplied with acoustic source terms from an incompressible flow simulation of the considered configuration in the limit of low Mach number. Source terms for use as input into different acoustic wave equations, the Lighthill wave equation, the vortex sound theory, and the Perturbed Convective Wave Equation (PCWE) are computed performing incompressible Direct Numerical Simulations (DNS) and Large-Eddy Simulations (LES) of fully developed pipe flow.
Technical Paper

Air Cooled 50cm3 Scooter Euro 4 Application of the Two-Stroke LPDI Technology

2014-11-11
2014-32-0008
The Institute for Internal Combustion Engines and Thermodynamics, Graz University of Technology, has presented several applications of its 2-stroke LPDI (low pressure direct injection) technology in the previous years ([1], [2], [3]). In order to improve the competitiveness of the 2-stroke LPDI technology, an air cooled 50cm3 scooter application has been developed. All previous applications have been liquid cooled. This air cooled application demonstrates the EURO 4 (2017) ability of the technology and shows that the 2S-LPDI technology can also be applied to low cost air-cooled engines. Hence, the complete scooter and moped fleet can be equipped with this technology in order to fulfil both the emission standards and the COP (conformity of production) requirements of Euro 4 emission stage. The paper presents the Euro 4 Scooter results and describes the efficient conversion process of the existing carburetor engine to the LPDI version.
Technical Paper

An Approach for Evaluating Rolling Resistance in Kart Racing Tires

2021-04-06
2021-01-0936
Drivetrain electrification is increasing in the kart racing sector since noise emissions are an important factor in urban areas. To improve range, it has become necessary to optimize the rolling resistance of kart racing tires. This paper introduces a parameter study for small bias-ply tires which are used in kart racing and investigates the effect of these parameters on rolling resistance. In recent literature, rolling resistance is mostly examined in radial passenger car tires. Most testing devices are limited to rim sizes from ten inches upwards. In this study, a test rig was developed with focus on low cost and small rim sizes. This self-developed test rig was validated through a comparison with an approved test rig according to ISO 18164 standard. A parameter study was conducted to investigate the effect of changes in the construction of the tire. These changes affect the warp count of the carcass fabric and the crown angle of the different plies.
Technical Paper

Analysis of a Prechamber Ignited HPDI Gas Combustion Concept

2020-04-14
2020-01-0824
High-pressure direct injection (HPDI) of natural gas into the combustion chamber enables a non-premixed combustion regime known from diesel engines. Since knocking combustion cannot occur with this combustion process, an increase in the compression ratio and thus efficiency is possible. Due to the high injection pressures required, this concept is ideally suited to applications where liquefied natural gas (LNG) is available. In marine applications, the bunkering of and operation with LNG is state-of-the-art. Existing HPDI gas combustion concepts typically use a small amount of diesel fuel for ignition, which is injected late in the compression stroke. The diesel fuel ignites due to the high temperature of the cylinder charge. The subsequently injected gas ignites at the diesel flame. The HPDI gas combustion concept presented in this paper is of a monovalent type, meaning that no fuel other than natural gas is used.
Technical Paper

Application of Electrically Driven Coolant Pumps on a Heavy-Duty Diesel Engine

2019-01-15
2019-01-0074
A reduction in CO2 emissions and consequently fuel consumption is essential in the context of future greenhouse gas limits. With respect to the thermodynamic loss analysis of an internal combustion engine, a gap between the net indicated thermal efficiency and the brake thermal efficiency is recognizable. This share is caused by friction losses, which are the focus of this research project. The parasitic loss reduction potential by replacing the mechanical water pump with an electric coolant pump is discussed in the course of this work. This is not a novel approach in light duty vehicles, whereas in commercial vehicles a rigid drive of all auxiliaries is standard. Taking into account an implementation of a 48-V power system in the short or medium term, an electrification of auxiliary components becomes feasible. The application of electric coolant pumps on an Euro VI certified 6-cylinder in-line heavy-duty diesel engine regarding fuel economy was thus performed.
Technical Paper

Basic Investigations on the Prediction of Spray-Wall and Spray-Fluid Interaction for a GDI Combustion Process

2010-09-28
2010-32-0030
This publication covers investigations on different 3D CFD models for the description of the spray wall and droplet-fluid interaction and the influence of these models on the mixture formation calculation results. Basic experimental investigations in a spray chamber and a flow tunnel as well as the corresponding 3D CFD simulation were conducted in order to clarify the prediction quality of the physical phenomena of spray-wall and spray-fluid interaction by the simulation. Influencing parameters such as the piston top temperature, piston bowl geometry, soot deposits on the piston top as well as flow velocity are investigated. This paper provides a direct link between the underlying simulation models of the mixture formation and actual real world combustion system development processes - underlining the importance of a close interaction of the model calibration and the development process.
Technical Paper

CFD Simulation Methodology for a Rotary Steam Expansion Piston Engine

2020-11-30
2020-32-2303
In industrial processes and other power generation processes, large amounts of waste heat are often lost to the environment. The conversion of this thermal energy into mechanical work promises a significant improvement in energy-utilization, the efficiency of the overall system and, consequently, cost-effectiveness. Therefore, the use of a Rankine-Cycle is a well-established technical process. A recent research project has investigated a novel expansion machine to be integrated into such an RC-process. Primarily, the present work deals with the fluid dynamic simulation of this expander, which is based on the principle of a rotary piston engine. The aim is to develop, analyze and optimize the process and the corresponding components. Hence, a CFD-model had to be built up, which should correspond as closely as possible to the physical engine.
Technical Paper

Challenges of measuring low levels of CO2 and NOx on H2-ICE

2024-07-02
2024-01-2998
Society is moving towards climate neutrality where hydrogen fuelled combustion engines (H2 ICE) could be considered a main technology. These engines run on hydrogen (H2) so carbon-based emission are only present at a very low level from the lube oil. The most important pollutants NO and NO2 are caused by the exhaust aftertreatment system as well as CO2 coming from the ambient air. For standard measurement technologies these low levels of CO2 are hard to detect due to the high water content. Normal levels of CO2 are between 400-500 ppm which is very close or even below the detection limit of commonly used non-dispersive-infrared-detectors (NDIR). As well the high water content is very challenging for NOx measuring devices, like chemiluminescence detectors (CLD), where it results in higher noise and therefore a worse detection limit. Even for Fourier-transformed-infrared-spectroscopy-analysers (FT-IR) it is challenging to deal with water content over 15% without increased noise.
Technical Paper

Characterization of Different Injection Technologies for High Performance Two-Stroke Engines

2016-11-08
2016-32-0001
High performance engines are used in many different powersports applications. In several of these applications 2-stroke engines play an important role. The direct injection technology is a key technology for 2-stroke engines to fulfill both the customers’ request for high power and the environmental requirements concerning emissions and efficiency. As the load spectrum differs from one application to the other, it was interesting to find out if different injection technologies can answer the needs for different applications more efficiently regarding performance but also economic targets. Therefore, the results of the BRP Rotax 600 cm3 E-TEC (direct injection system) engine are compared to the same base engine but adopted with the LPDI (low pressure direct injection) technology developed by IVT at Graz University of Technology. The systems were compared on the engine testbench over 17 rpm / load points representing different product usage profiles.
Technical Paper

Combustion Analysis with Residual Gas as a Design Parameter for Two-Stroke Engines

2018-10-30
2018-32-0045
In a variety of applications, two-stroke engines assert their usage as a propulsion unit, for examples in off-road vehicles, scooters, hand-held power tools and others. The outstanding power to weight ratio is the key advantage for two-stroke engines. Furthermore, two-stroke engines convince with high durability and low maintenance demand. However, an increasing environmental awareness, the protection of health and the shortage of fossil resources are the driving factors to further enhance the internal combustion process of two-stroke engines. The reduction of emissions and fuel consumption with a constant power level is focused on. Developments deal with the optimization of the combustion process itself or the enhancement of the exhaust gas aftertreatment. Especially in very small two-stroke engines an exhaust gas aftertreatment system is rarely applied, due to disadvantages regarding component temperatures and product costs.
Technical Paper

Comparison of Different Downsizing Strategies for 2- and 3-Cylinder Engines by the Use of 1D-CFD Simulation

2016-11-08
2016-32-0037
The internal combustion engine is still the most important propulsion system for individual mobility. Especially for the application of motorcycles and recreation vehicles the extraordinary high power density is crucial. Today, these engines are mainly 4-stroke naturally aspirated MPFI engines. The main difference to the automotive sector is the abandonment of all cost intensive technologies, like variable valve timing, intake air charging or gasoline direct injection. The need for further investigations and implementation of new technologies is given due to the very high share of total road transport emissions of motorcycles and the introduction of the emission limits of EURO5 in 2020. One possibility to reach the future emission limits is the downsizing strategy. For this, the potential for emission and fuel consumption reduction is well known.
Technical Paper

Control of a Low Cost Range Extender for L1e Class PHEV Two-Wheelers

2014-11-11
2014-32-0014
Due to the small number of two wheelers in Europe and their seasonal use, their contribution to the total emissions has been underestimated for a long time. With the implementation of the new emission regulation 168/2013 [3] for type approval coming into force 2016, the two wheeler sector is facing major changes. The need to fulfil more stringent emission limits and the high demand on the durability of after treatment systems result in an engine control system that is getting more complex and therewith more expensive. Especially the low cost two wheelers with small engine capacities will be affected by increasing costs which cannot be covered by the actual competitive product price. Therefore, new vehicle concepts have to be introduced on the market. A vehicle concept of a plug in hybrid electric city scooter with range extender as well as the range extender itself have already been published in SAE Papers 2011-32-0592 [1] and 2012-32-0083 [2].
Technical Paper

Crankcase Supercharged Four Stroke Engine with Oil Separating System

2004-01-01
2004-01-2105
An efficient and economic method to increase the performance of four stroke engines can be accomplished by utilizing the crankcase supercharging method. The lubrication of the movable parts in the crankcase by mixing the intake air with lubricant leads to a high oil consumption and disadvantages in the emission characteristics. This paper describes parts of a research project with the goal to develop a supercharged four–stroke engine with a closed loop lubrication system for the crank train and the cylinder head. The thermodynamic layout and the development of an oil separating system have been carried out with the help of simulation tools and development work on a flow test bench.
Technical Paper

Development of a Virtual Sensor to Predict Cylinder Pressure Signal Based on a Knock Sensor Signal

2022-03-29
2022-01-0627
Virtual sensing refers to the processing of desired physical data based on measured values. Virtual sensors can be applied not only to obtain physical quantities which cannot be measured or can only be measured at an unreasonable expense but also to reduce the number of physical sensors and thus lower costs. In the field of spark ignited internal combustion engines, the virtual sensing approach may be used to predict the cylinder pressure signal (or characteristic pressure values) based on the acceleration signal of a knock sensor. This paper presents a method for obtaining the cylinder pressure signal in the high-pressure phase of an internal combustion engine based on the measured acceleration signal of a knock sensor. The approach employs a partial differential equation to represent the physical transfer function between the measured signal and the desired pressure. A procedure to fit the modeling constants is described using the example of a large gas engine.
X