Refine Your Search

Topic

Search Results

Technical Paper

Analysis of Direct Solar Illumination on the Backside of Space Station Solar Cells

1999-08-02
1999-01-2431
The International Space Station (ISS) is a complex spacecraft that will take several years to assemble in orbit. During many of the assembly and maintenance procedures, the space station’s large solar arrays must be locked, which can significantly reduce power generation. To date, power generation analyses have not included power generation from the backside of the solar cells in a desire to produce a conservative analysis. This paper describes the testing of ISS solar cell backside power generation, analytical modeling, and analysis results on an ISS assembly mission.
Technical Paper

Corrosion Testing of Brazed Space Station IATCS Materials

2004-07-19
2004-01-2471
Increased nickel concentrations in the IATCS coolant prompted a study of the corrosion rates of nickel-brazed heat exchangers in the system. The testing has shown that corrosion is occurring in a silicon-rich intermetallic phase in the braze filler of coldplates and heat exchangers as the result of a decrease in the coolant pH brought about by cabin carbon dioxide permeation through polymeric flexhoses. Similar corrosion is occurring in the EMU de-ionized water loop. Certain heat exchangers and coldplates have more silicon-rich phase because of their manufacturing method, and those units produce more nickel corrosion product. Silver biocide additions did not induce pitting corrosion at silver precipitate sites.
Technical Paper

DC Bus Regulation with a Flywheel Energy Storage System

2002-10-29
2002-01-3229
This paper describes the DC bus regulation control algorithm for the NASA flywheel energy storage system during charge, charge reduction and discharge modes of operation. The algorithm was experimentally verified in [1] and this paper presents the necessary models for simulation. Detailed block diagrams of the controller algorithm are given. It is shown that the flywheel system and the controller can be modeled in three levels of detail depending on the type of analysis required. The three models are explained and then compared using simulation results.
Technical Paper

Development Status of an EVA-sized Cycling Amine Bed System for Spacesuit Carbon Dioxide and Humidity Removal

2007-07-09
2007-01-3272
Under a NASA sponsored technology development activity, Hamilton Sundstrand has designed, fabricated, tested and delivered a prototype solid amine-based carbon dioxide (CO2) and water (H2O) vapor removal system sized for Extravehicular Activity (EVA) operation. The prototype system employs two alternating and thermally-linked solid amine sorbent beds to continuously remove CO2 and H2O vapor from a closed environment. While one sorbent bed is exposed to the vent loop to remove CO2 and water vapor, the other bed is exposed to a regeneration circuit, defined as either vacuum or an inert sweep gas stream. A linear spool valve, coupled directly to the amine canister assembly, is utilized to simultaneously divert the vent loop flow and regeneration circuit flow between the two sorbent beds.
Technical Paper

Development Status of the Carbon Dioxide and Moisture Removal Amine Swing-Bed System (CAMRAS)

2009-07-12
2009-01-2441
Under a cooperative agreement with NASA, Hamilton Sundstrand has successfully designed, fabricated, tested and delivered three, state-of-the-art, solid amine prototype systems capable of continuous CO2 and humidity removal from a closed, habitable atmosphere. Two prototype systems (CAMRAS #1 and #2) incorporated a linear spool valve design for process flow control through the sorbent beds, with the third system (CAMRAS #3) employing a rotary valve assembly that improves system fluid interfaces and regeneration capabilities. The operational performance of CAMRAS #1 and #2 has been validated in a relevant environment, through both simulated human metabolic loads in a closed chamber and through human subject testing in a closed environment.
Technical Paper

Durable Coating Technology for Lunar Dust Protection and Mitigation

2006-07-17
2006-01-2205
Special coatings are being developed and tested to contend with the effects of dust on the lunar surface. These coatings will have wide applicability ranging from prevention of dust buildup on solar arrays and radiator surfaces to protection of EVA space suit fabrics and visors. They will be required to be durable and functional based on application. We have started preparing abrasion-resistant transparent conductive coatings ∼40 nm thick were formed by co-deposition of titanium dioxide (TiO2) and titanium (Ti) on room-temperature glass and polycarbonate substrates using two RF magnetron sputtering sources. By adjusting Ti content, we obtained sheet resistivities in the range 104-1010 ohms/square. We have also started conducting a series of environmental tests that simulate the exposure of coated samples to dust under relevant conditions, beginning with abrasion tests using regolith simulant materials.
Technical Paper

High Heat Flux Dissipation for DEW Applications

2004-11-02
2004-01-3205
A High Heat Flux Demonstration Program has been initiated to investigate and demonstrate the performance of a number of candidate cooling technologies to address the need of dissipating the large thermal loads and high heat fluxes associated with Directed Energy Weapons (DEW) systems. The technologies selected for these investigations utilize both single-phase and two-phase cooling concepts. The single-phase devices investigated are based upon the concept of jet impingement with and without extended surface areas. The two-phase devices investigated extend the jet impingement concepts into the liquid-vapor phase change regime, as well as a device based upon vapor injection spray cooling technology. In addition, all devices must demonstrate scalability. For each device a unit cooling cell has been defined and greater surface area capability is to be achieved with the addition of adjacent cells without significantly affecting the performance of neighboring cells.
Technical Paper

Innovative Multi-Environment, Multimode Thermal Control System

2007-07-09
2007-01-3202
Innovative multi-environment multimode thermal management architecture has been described that is capable of meeting widely varying thermal control requirements of various exploration mission scenarios currently under consideration. The proposed system is capable of operating in a single-phase or two-phase mode rejecting heat to the colder environment, operating in a two-phase mode with heat pump for rejecting heat to a warm environment, as well as using evaporative phase-change cooling for the mission phases where the radiator is incapable of rejecting the required heat. A single fluid loop can be used internal and external to the spacecraft for the acquisition, transport and rejection of heat by the selection of a working fluid that meets NASA safety requirements. Such a system may not be optimal for each individual mode of operation but its ability to function in multiple modes may permit global optimization of the thermal control system.
Journal Article

Lightning Effects on Hydraulic Transport Elements in Composite Aircraft

2011-10-18
2011-01-2760
In this study, lightning effects on hydraulic transport elements in composite aircraft have been considered for the first time. Based on recent test results and analysis, several forms of possible structural damage and system component failures are presented. A unique approach in analysis has been taken to account that hydraulic transport elements, as a part of several aircraft systems, have a common interface with electrical wiring, and become complex electric networks. When an aircraft is exposed to a direct lightning strike, a metal skin on the wings and fuselage will conduct lightning currents in a way that only a small amount of induced electromagnetic energy will be present on hydraulic transport elements. So, in the past, hydraulic tubes, actuators, manifolds, and all other hydro-mechanical devices, as parts of various aircraft systems, have never been considered as lightning sensitive components.
Technical Paper

Measurement of Trace Water Vapor in a Carbon Dioxide Removal Assembly Product Stream

2004-07-19
2004-01-2444
The International Space Station Carbon Dioxide Removal Assembly (CDRA) uses regenerable adsorption technology to remove carbon dioxide (CO2) from cabin air. CO2 product water vapor measurements from a CDRA test bed unit at the NASA Marshall Space Flight Center were made using a tunable infrared diode laser differential absorption spectrometer (TILDAS) provided by NASA Glenn Research Center. The TILDAS instrument exceeded all the test specifications, including sensitivity, dynamic range, time response, and unattended operation. During the CO2 desorption phase, water vapor concentrations as low as 5 ppmv were observed near the peak of CO2 evolution, rising to levels of ∼40 ppmv at the end of a cycle. Periods of high water concentration (>100 ppmv) were detected and shown to be caused by an experimental artifact.
Technical Paper

NDE Methodologies for Composite Flywheels Certification

2000-10-31
2000-01-3655
Manufacturing readiness of composite rotors and certification of flywheels depend in part on the maturity of nondestructive evaluation (NDE) technology for process optimization and quality assurance, respectively. Capabilities and limitations of x-ray-computed tomography and radiography, as well as advanced ultrasonics were established on NDE ring and rotor standards with EDM notches and drilled holes. Also, intentionally seeded delamination, tow break, and insert of bagging material were introduced in hydroburst-rings to study the NDE detection capabilities of such anomalies and their effect on the damage tolerance and safe life margins of subscale rings and rotors. Examples of possible occurring flaws or anomalies in composite rings as detected by NDE and validated by destructive metallography are shown. The general NDE approach to ensure quality of composite rotors and to help in the certification of flywheels is briefly outlined.
Journal Article

Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware

2008-06-29
2008-01-2060
Following the Columbia accident, the EMUs (Extravehicular Mobility Units) onboard the ISS (International Space Station) went unused for an extended period of time. Upon startup, the units experienced a failure in the coolant systems. The failure resulted in a loss of EVA (Extravehicular Activity) capability from the US segment of the ISS. A failure investigation determined that chemical and biological contaminants and byproducts from the ISS Airlock Heat Exchanger, and the EMU itself, fouled the magnetically coupled pump in the EMU Transport Loop Fan/Pump Separator leading to a lack of coolant flow. Remediation hardware (the Airlock Coolant Loop Remediation water processing kit) and a process to periodically clean the EMU coolant loops on orbit were devised and implemented. The intent of this paper is to report on the successful implementation of the resultant hardware and process, and to highlight the go-forward plan.
Journal Article

Performance of the Extravehicular Mobility Unit (EMU) Airlock Coolant Loop Remediation (A/L CLR) Hardware Phase II

2009-07-12
2009-01-2541
An EMU water processing kit (Airlock Coolant Loop Recovery – A/L CLR) was developed as a corrective action to Extravehicular Mobility Unit (EMU) coolant flow disruptions experienced on the International Space Station (ISS) in May of 2004 and thereafter. Conservative schedules for A/L CLR use and component life were initially developed and implemented based on prior analysis results and analytical modeling. The examination of post-flight samples and EMU hardware in November of 2006 indicated that the A/L CLR kits were functioning well and had excess capacity that would allow a relaxation of the initially conservative schedules of use and component life. A relaxed use schedule and list of component lives were implemented thereafter. Since the adoption of the relaxed A/L CLR schedules of use and component lives, several A/L CLR kit items, transport loop water samples and sensitive EMU transport loop components have been examined to gage the impact of the relaxed requirements.
Technical Paper

Radiation in Space and its Control of Equilibrium Temperatures in the Solar System

2004-07-19
2004-01-2518
The problem of determining equilibrium temperatures for re-radiating surfaces in space vacuum was analyzed and the resulting mathematical relationships were incorporated in a code to determine space sink temperatures in the solar system. A brief treatment of planetary atmospheres is also included. Temperature values obtained with the code are in good agreement with available spacecraft telemetry and meteorological measurements for Venus and Earth. The code has been used in the design of space power system radiators for future interplanetary missions.
Technical Paper

Results and Analysis from Reduced Gravity Experiments of the Flexible Membrane Commode Apparatus

2009-07-12
2009-01-2344
Two separate experimental rigs used in tests on NASA and Zero-G Corporation aircrafts flying low-gravity trajectories, and in the NASA 2.2 Second Drop Tower have been developed to test the functioning of the Flexible Membrane Commode (FMC) concept under reduced gravity conditions. The first rig incorporates the flexible, optically opaque membrane bag and the second rig incorporates a transparent chamber with a funnel assembly for evacuation that approximates the size of the membrane bag. Different waste dispensers have been used including a caulking gun and flexible hose assembly, and an injection syringe. Waste separation mechanisms include a pair of wire cutters, an iris mechanism, as well as discrete slug injection. The experimental work is described in a companion paper. This paper focuses on the obtained results and analysis of the data.
Technical Paper

Simulation of Ice Particle Breakup and Ingestion into the Honeywell Uncertified Research Engine (HURE)

2019-06-10
2019-01-1965
Numerical solutions have been generated which simulate flow inside an aircraft engine flying at altitude through an ice crystal cloud. The geometry used for this study is the Honeywell Uncertified Research Engine (HURE) which was recently tested in the NASA Propulsion Systems Laboratory (PSL) in January 2018. The simulations were carried out at predicted operating points with a potential risk of ice accretion. The extent of the simulation is from upstream of the engine inlet to downstream past the strut in the core and bypass. The flow solution is produced using GlennHT, a NASA in-house code. A mixing plane approximation is used upstream and downstream of the fan. The use of the mixing plane allows for steady state solutions in the relative frame. The flow solution is then passed on to LEWICE3D for particle trajectory, impact and breakup prediction. The LEWICE3D code also uses a mixing plane approximation at the boundaries upstream and downstream of the fan.
Technical Paper

Testing of an R134a Spray Evaporative Heat Sink

2008-06-29
2008-01-2165
The NASA Glenn Research Center has been developing a spacecraft open loop spray evaporative heat sink for use in pressure environments near sea-level, where evaporative cooling of water is not effective. The working fluid is R134a, a common refrigerant used in household appliances, considered safe and non-toxic for humans. The concept uses an open loop spray of R134a impinging on a heated flat plate, through which a closed loop of hot coolant flows, having acquired the heat from spacecraft electronics boxes, the cabin heat exchanger, and other heat sources. The latent heat of evaporation cools the outside of the hot plate, and through heat conduction, reduces the temperature of the coolant. The testing at NASA Glenn has used an electrically heated cylindrical copper target to simulate the hot plate. This paper will discuss the R134a feed system, the test matrix, and test results.
Technical Paper

Testing of the Multi-Fluid Evaporator Engineering Development Unit

2007-07-09
2007-01-3205
Hamilton Sundstrand is under contract with the NASA Johnson Space Center to develop a scalable, evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It is being designed to support the Orion Crew Module and to support future Constellation missions. A MFE would be used from Earth sea level conditions to the vacuum of space. The current Space Shuttle configuration utilizes an ammonia boiler and flash evaporator system to achieve cooling at all altitudes. With the MFE system, both functions are combined into a single compact package with significant weight reduction and improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing cross-sectional area to keep the back pressure low. Its multiple layer construction allows for efficient scale up to the desired heat rejection rate.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

2008-06-29
2008-01-2166
Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

The ISS Water Processor Catalytic Reactor as a Post Processor for Advanced Water Reclamation Systems

2007-07-09
2007-01-3038
Advanced water processors being developed for NASA's Exploration Initiative rely on phase change technologies and/or biological processes as the primary means of water reclamation. As a result of the phase change, volatile compounds will also be transported into the distillate product stream. The catalytic reactor assembly used in the International Space Station (ISS) water processor assembly, referred to as Volatile Removal Assembly (VRA), has demonstrated high efficiency oxidation of many of these volatile contaminants, such as low molecular weight alcohols and acetic acid, and is considered a viable post treatment system for all advanced water processors. To support this investigation, two ersatz solutions were defined to be used for further evaluation of the VRA. The first solution was developed as part of an internal research and development project at Hamilton Sundstrand (HS), and is based primarily on ISS experience related to the development of the VRA.
X