Refine Your Search

Topic

Affiliation

Search Results

Video

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-06-18
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system. Presenter Yan Zhang, Brunel University
Technical Paper

2-Stroke CAI Combustion Operation in a GDI Engine with Poppet Valves

2012-04-16
2012-01-1118
In order to extend the CAI operation range in 4-stroke mode and maximize the benefit of low fuel consumption and emissions in CAI mode, 2-stroke CAI combustion is revived operating in a GDI engine with poppet valves, where the conventional crankcase scavenging is replaced by boosted scavenging. The CAI combustion is achieved through the inherence of the 2-Stroke operation, which is retaining residual gas. A set of flexible hydraulic valve train was installed on the engine to vary the residual gas fraction under the boosting condition. The effects of spark timing, intake pressure and short-circuiting on 2-stroke CAI combustion and its emissions are investigated and discussed in this paper. Results show the engine could be controlled to achieve CAI operation over a wide range of engine speed and load in the 2-stroke mode because of the flexibility of the electro-hydraulic valvetrain system.
Technical Paper

2-Stroke CAI Operation on a Poppet Valve DI Engine Fuelled with Gasoline and its Blends with Ethanol

2013-04-08
2013-01-1674
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Currently, CAI combustion is constrained at part load operation conditions because of misfire at low load and knocking combustion at high load, and the lack of effective means to control the combustion process. Extending its operating range including high load boundary towards full load and low load boundary towards idle in order to allow the CAI engine to meet the demand of whole vehicle driving cycles, has become one of the key issues facing the industrialisation of CAI/HCCI technology. Furthermore, this combustion mode should be compatible with different fuels, and can switch back to conventional spark ignition operation when necessary. In this paper, the CAI operation is demonstrated on a 2-stroke gasoline direct injection (GDI) engine equipped with a poppet valve train.
Technical Paper

4-Stroke Multi-Cylinder Gasoline Engine with Controlled Auto-Ignition (CAI) Combustion: a comparison between Naturally Aspirated and Turbocharged Operation

2008-10-07
2008-36-0305
Controlled Auto-Ignition (CAI) also known as Homogeneous Charge Compression Ignition (HCCI) is increasingly seen as a very effective way of lowering both fuel consumption and emissions. Hence, it is regarded as one of the best ways to meet stringent future emissions legislation. It has however, still many problems to overcome, such as limited operating range. This combustion concept was achieved in a production type, 4-cylinder gasoline engine, in two separated tests: naturally aspirated and turbocharged. Very few modifications to the original engine were needed. These consisted basically of a new set of camshafts for the naturally aspirated test and new camshafts plus turbocharger for the test with forced induction. After previous experiments with naturally aspirated CAI operation, it was decided to investigate the capability of turbocharging for extended CAI load and speed range.
Technical Paper

A Comparison Study on the Performance of the Multi-Stroke Cycle SI Engine under Low Load

2021-04-06
2021-01-0530
Pumping Mean Effective Pressure (PMEP) is the main factor limiting the improvement of thermal efficiency in a spark-ignition (SI) engine under low load. One of the ways to reduce the pumping loss under low load is to use Cylinder DeActivation (CDA). The CDA aims at reducing the firing density (FD) of the SI engine under low load operation and increasing the mass of air-fuel mixture within one cycle in one cylinder to reduce the throttling effect and further reducing the PMEP. The multi-stroke cycles can also reduce the firing density of the SI engine after some certain reasonable design, which is feasible to improve the thermal efficiency of the engine under low load in theory. The research was carried out on a calibrated four-cylinder SI engine simulation platform. The thermal efficiency improvements of the 6-stroke cycle and 8-stroke cycle to the engine performance were studied compared with the traditional 4-stroke cycle under low load conditions.
Technical Paper

A Cylinder Pressure Correction Method Based on Calculated Polytropic Exponent

2017-10-08
2017-01-2252
The acquisition of more authentic cylinder pressure data is the basis of engine combustion analysis. Due to the multiple advantages, quartz piezoelectric pressure transducers are generally applied to the measurement of the cylinder pressure. However, these transducers can only produce dynamic cylinder pressure data which may be significantly different from the actual values. Thus, the cylinder pressure data need to be corrected through a certain method, while different cylinder pressure correction methods will cause result divergences of the combustion analysis. This paper aims to acquire a proper cylinder pressure correction method by carrying out theoretical analysis based on the polytropic process in the compression stroke as well as the experimental research of the cylinder pressure of a turbocharged eight-cylinder diesel engine.
Technical Paper

A Dynamic Filtration Model for the Power-shift Steering Transmission

2016-04-05
2016-01-1139
Within the hydraulic shifting circuit of power-shift steering transmission, the performance of filter is generally characterized by the theoretical filtration ratio. However in practical work, the actual filtration ratio is far less than the theoretical ratio. On the basis of investigation on the structural characteristics, the oil flowing distribution and the filter mechanisms, the re-filtering rate ω and recontaminative rate θ are defined to simulate the actual filtering process. Therefore, the dynamic filtration ratio is modelled and simulated in MATLAB/Simulink to investigate that how the filtering rate ω and θ influence the dynamic filtration ratio and the deviation between the dynamic ratio and theoretical ratio. Afterwards, the variation of dynamic filtration ratio is tested through a filtration experiment under the circumstances of various flow rate, temperature and pressure.
Technical Paper

A General Selection Method for the Compressor of the Hydrogen Internal Combustion Engine with Turbocharger

2017-03-28
2017-01-1025
Hydrogen is a promising energy carrier because it is characterized by a fast combustion velocity, a wide range of sources, and clean combustion products. A hydrogen internal combustion engine (H2ICE) with a turbocharger has been used to solve the contradiction of power density and control NOx. However, the selection of a H2ICE compressor with a turbocharger is very different from traditional engines because of gas fuel. Hydrogen as a gas fuel has the same volume as its cylinder and thus increases pressure and reduces the mass flow rate of air in cylinder for a port fuel injection-H2ICE (PFI-H2ICE). In this study, a general method involving a H2ICE with a turbocharger is proposed by considering the effect of hydrogen on cylinders. Using this method, we can calculate the turbocharged pressure ratio and mass flow rate of air based on the target power and general parameters. This method also provides a series of intake temperatures of air before calculation to improve accuracy.
Technical Paper

A Novel Driver Model for Real-time Simulation on Electric Powertrain Test Bench

2017-10-08
2017-01-2460
In this paper, a novel driver model is proposed to track vehicle speed in MIL (Model-in-the-Loop) test system, which has structural consistency with HIL (Hardware-in-the-Loop) test system. First, the MIL test system which contains models of driver, vehicle and test bench is established. Second, according to the connections of the established models in Matlab/Simulink environment, the vehicle speed is calculated in vehicle model. Emphatically, through the deviation between driving cycle speed and calculated vehicle speed, PI controller in driver model adjusts the vehicle speed to ideal point through sending the torque command to drive motor, the ILC (Iterative Learning Control) controller modifies and stores P value of PI controller. Then, in order to obtain the better modification of PI controller, iterative learning control algorithm is deeply researched in term of types and parameters.
Technical Paper

A Novel Fuel Efficient and Emission Abatement Technique for Internal Combustion Engines

1998-10-19
982561
The investigation and results presented hereafter are based on the use of a novel technique to improve the performance and emission characteristics of gasoline and diesel engines. The technique involved generating corona discharges within the engine's pre-combustion air stream. These discharges were created by a multi-points charged electrodes. The onset of the discharges facilitated the ionization and excitation process of the neutral air species. New radicals and highly oxidizing species such as atomic oxygen (O) and ozone (O3) were produced and these are known to modify some of the chemical reactions involved in the combustion of hydrocarbon fuels. Measurements of both gasoline and diesel engine torque, speed, various temperatures, fuel consumption and exhaust gas composition were obtained, using a constant throttle position under both normal and coronas operating conditions.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

A Study of Calibration of Electronic-controlled Injector Employed in High Pressure Common Rail System

2008-06-23
2008-01-1742
In order to meet the need of high pressure common rail diesel engine, calibration for injection quantity and basic MAP of electronic-controlled injector are made. Combining with testing data, influencing factors for consistency and identity of injecting fuel in electronic-controlled injector are analyzed, in the condition of small quantity, controlled-pressure undulation quantity and injecting pulse revising are presented to achieve the respective demand. Primary basic map for common rail pressure and injecting fuel are fixed with alterable step method, and calibration of fuel quantity MAP is made on bench test. Finally test of electronic-controlled injector equipped in diesel engine is finished, testing result showed that calibration process and method are reasonable.
Technical Paper

A Study of Hydrogen Internal Combustion Engine EGR System

2014-04-01
2014-01-1071
NOx are the only harmful emissions of hydrogen internal combustion engine. EGR is one of the effective methods to reduce NOx. The traditional EGR is not suitable for hydrogen internal combustion engine. Therefore, the study of influence of hot EGR on hydrogen internal combustion engine is important. A 2.0L hydrogen internal combustion engine with hot EGR system model is employed to optimize the diameter and position of hot EGR based on a simulation analysis. The result shows that both of the combustion temperature and NOx increase as EGR increases due to the rise of intake temperature for low load condition, for heavy load, with the increase of EGR rate, NOx emissions decreases slightly before the mixture equivalence ratio comes to 1and then dropped significantly after the mixture equivalence ratio greater than 1. Unburned hydrogen in TWC has the effect of reducing NOx after catalysts decrease largely.
Technical Paper

A Study of the Adaptability of Three Way Catalytic Converter under Hydrogen-Gasoline Dual-Fuel Alternate Working Mode

2014-04-01
2014-01-1342
Nowadays, the world is facing severe energy crisis and environment problems. Development of hydrogen fuel vehicles is one of the best ways to solve these problems. Due to the difficulties of infrastructures, such as the hydrogen transport and storage, hydrogen fuel vehicles have not been widely used yet. As a result, Hydrogen-gasoline dual-fuel vehicle is a solution as a compromise. In this paper, three way catalytic converter (TWC) was used to reduce emissions of hydrogen-gasoline dual-fuel vehicles. On wide open throttle and load characteristics, the conversion efficiency of TWC in gasoline engine was measured. Then the TWC was connected to a hydrogen internal combustion engine. After switching the hydrogen and gasoline working mode, emission data was measured. Experiment results show that the efficiency of a traditional TWC can be maintained above 85%., while it works in a hydrogen-gasoline dual-fuel alternative working mode.
Technical Paper

A Test Bench for the Turbocharger Fatigue Life Based on the Self-Circulation

2015-04-14
2015-01-0429
The low cycle fatigue experiment is extensively used to test the reliability and durability of turbocharger. Low cycle fatigue test is mainly the switching between high and low speed. As the result of the experiment, the fatigue life is shorter as the difference between high and low speed becomes greater. In the traditional low cycle fatigue test, a large air compressor is needed to drive the turbocharger under different operating conditions, which consume large amounts of electric power. This paper presents a new experiment device which has double chambers and double turbochargers. This device can be self-circulating, without the large air compressor, to realize high and low speed switching on the premise of not exceeding the limitation of turbine entry temperature. First, a detailed model is established in GT-Power and self-circulation test data has been used to validate the model.
Technical Paper

A computer-based simulation and test system for the calibration of EFI engine

2000-06-12
2000-05-0094
When the EFI system is used in a specific engine, lots of experiments are needed to optimize the control data (MAP). This work is time and financial consuming. This paper aims to develop a computer-based simulation and test system, which can produce the initial control MAP with good accuracy, and calibrate the ECU on-line. So the experiments are reduced and calibration is accelerated. In order to improve the accuracy of the initial control data, the mathematical models are built not only based on theoretical equations, but also on the control data of typical operation points, which is obtained by the on- line calibration of specific engines. This system can also perform some special calibrations, like "constant pulse width" and "square wave modulation."
Journal Article

An Analysis of Lubricating Gap Flow in Radial Piston Machines

2014-09-30
2014-01-2407
Radial piston units find several applications in fluid power, offering benefits of low noise and high power density. The capability to generate high pressures makes radial piston pumps suitable for clamping function in machine tools and also to operate presses for sheet metal forming. This study is aimed at developing a comprehensive multidomain simulation tool to model the operation of a rotating cam type radial piston pump, with particular reference to the lubricating gap flow between the pistons and the cylinder block. The model consists of a first module which simulates the main flow through the unit according to a lumped parameter approach. This module evaluates the features of the displacing action accounting for the detailed evaluation of the machine kinematics and for the mechanical dynamics of the check valves used to control the timing for the connection of each piston chamber with the inlet and outlet port.
Technical Paper

An Experimental Investigation on Combustion and Emissions Characteristics of Turbocharged DI Engines Fueled with Blends of Biodiesel

2005-05-11
2005-01-2199
Turbocharged and intercooled DI engines, fueled with different blends of biodiesel and diesel fuel, were chosen to conduct performance and emission tests on dynamometers. The properties of the test fuels were tested. The cylinder pressure and fuel injection pressure signals were recorded and combustion analysis was conducted. The engine exhaust emissions were measured. The results of the study indicated that HC, CO, PM and smoke emissions improvement was obtained. But there was an increase in fuel consumption and NOx emission, and a slight drop in power with the blends. The combustion analysis showed that biodiesel had a shorter ignition delay and a lower premixed combustion amount, but had an early start of injection caused by the fuel properties. The relationship between combustion and emissions was discussed.
Technical Paper

An Experimental Investigation on Removing PM and NOX Simultaneously from Diesel Exhaust

2008-06-23
2008-01-1793
In order to achieve simultaneous removal of particulate matters (PM) and NOX in diesel exhaust, a new kind of aftertreatment prototype has been developed. The prototype combined effects of static, cyclone, non-thermal plasma and hydrocarbon selective catalytic reduction. Experiments have been carried out with standard gases simulating diesel exhaust. Physical and chemical effects that took place in the prototype are as follows: the collection of PM by electrostatic-cyclone system, the oxidative combustion of PM, the selective catalytic reduction of NOX, and the reaction between PM and NOX. The effect of non-thermal plasma makes the density of NO decrease and that of NO2 increase, whereas, the amount of NOX remains the same. Employing catalyst coupled with non-thermal plasma debase the temperature by about 50◻, there the peak value of transform rate appears.
Technical Paper

An Experimental Study on the Dynamic Ice Accretion Processes on Bridge Cables with Different Surface Modifications

2019-06-10
2019-01-2018
An experimental study was conducted to investigate the dynamic ice accretion processes on bridge cables with different surface modifications (i.e., 1. Standard plain, 2. Pattern-indented surface, and 3. helical fillets). The icing experiments were performed in the unique Icing Research Tunnel available at Iowa State University (i.e., ISU-IRT). In order to reveal the transient ice accretion processes and the associated aerodynamic loadings on the different cable models under the different icing conditions (i.e., rime vs. glaze), while a high-speed imaging system was used to capture the transient details of the surface water transport and ice accretion over the cable surfaces, a high-accuracy dual-transducer force measurement system was also utilized to measure the aerodynamic loadings acting on the ice accreting cable models.
X