Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Hydrogen Effect on the DeNOX Efficiency Enhancement of Fresh and Aged Ag/Al2O3 HC-SCR in a Diesel Engine Exhaust

2011-04-12
2011-01-1278
HC-SCR is more convenient when compared to urea-SCR, since for HC-SCR, diesel fuel can be used as the reductant which is already available onboard the vehicle. However, the DeNOX efficiency for HC-SCR is lower than that of urea-SCR in both low and high temperature windows. In an attempt to improve the DeNOX efficiency of HC-SCR, the effect of hydrogen were evaluated for the fresh and aged catalyst over 2 wt.% Ag/Al₂O₃ using a Euro-4 diesel engine. In this engine bench test, diesel fuel as the reductant was injected directly into the exhaust gas stream and the hydrogen was supplied from a hydrogen bomb. The engine was operated at 2,500 rpm and BMEP 4 bar. The engine-out NOX was around 180 ppm-200 ppm. H₂/NOX and HC₁/NOX ratios were 5, 10, 20, and 3, 6, 9, respectively. The HC-SCR inlet exhaust gas temperatures were around 215°C, 245°C, and 275°C. The catalyst volumes used in this test were 2.5L and 5L for both fresh and aged catalysts.
Technical Paper

Urea-SCR Catalysts with Improved Low Temperature Activity

2011-04-12
2011-01-1315
Urea-SCR systems have become one effective method for meeting the ever tightening NOx emission control regulations for diesel engines. Higher activity of SCR catalysts in the low temperature region is crucial for meeting emission regulations and improving fuel economy. Some of the new catalytic components in the literature have shown good low temperature SCR activity, but they have not been fully confirmed to be durable enough for mobile applications. Fe-zeolite has been widely used in mobile applications due to its wide operating temperature window, but after exposure to large amounts of HCs at low temperatures, it is easily deactivated. We developed new SCR catalysts with improved low temperature activity and improved durability against HC fouling and thermal sintering by combining OSC (oxygen storage component) with Fe-zeolite.
X