Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Comparison Between Human Kinematics and the Predictions of Mathematical Crash Victim Simulators

1971-02-01
710849
A study has been conducted as an initial step in determining the differences observed between the motions of a living human impact sled test subject and a dummy test subject. The mechanism which is proposed for accomplishing this is the HSRI Two-Dimensional Mathematical Crash Victim Simulator. A series of measurements were taken on human test subjects, including classical and nonclassical anthropometric measurements, range of motion measurements for the joints, and maximum foot force measurements. A series of mathematical expressions has been used to predict body segment weight, centers of gravity, and moments of inertia using the results of the various body measurements. It was then possible to prepare a data set for use with the mathematical model.
Technical Paper

Development of a Mechanical Model of the Human Head - Determination of Tissue Properties and Synthetic Substitute Materials

1970-02-01
700903
A variety of mechanical head forms is used today in the evaluation of the crashworthiness of automotive interiors and the effectiveness of helmet designs. Most head forms are of a very rigid metallic construction, although frangible head forms that indicate skull fracture are presently available. None of the existing head forms can be considered a complete mechanical analog to the human head in terms of mechanical response. This paper describes the initial phases of the development of such a head form. The first step in the development of the model was the determination of the pertinent mechanical properties of the tissues of the human head (scalp, skull bone, dura mater, and brain). A testing program which determined these properties at both static and dynamic strain rates is described and the results are summarized. The second phase of the program was to find and develop synthetic materials which duplicated the mechanical properties of the human tissues.
Technical Paper

Side Impact Tolerance to Blunt Trauma

1973-02-01
730979
The object of this research program has been to extend the scope of earlier work to include long-duration head impacts and to develop new scaling relationships to allow extrapolation of impact data from infrahuman primates to living humans. A series of living primate side impacts to the head and torso was conducted in parallel with a series of impacts to human cadavers. Dimensional analysis techniques were employed to estimate in vivo human tolerance to side injury. The threshold of closed brain injury to humans was found to be 76 g for a pulse duration of 20 ms and an impact velocity of 43 ft/s (13.2 m/s). The maximum tolerable penetration to the chest was found to be 2.65 in (6.72 cm) for both the left and right sides. Scaling of abdominal injuries to humans was accomplished by employing a factor that relates impact contact area, animal mass, impact force, and pulse duration to injury severity.
X