Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

3D Numerical Simulation of Fuel injection and Combustion Phenomena in DI Diesel Engines

1989-02-01
890668
Recently the analysis of air-fuel mixing and combustion has become important under the stringent emissions regulations of diesel engines. In the case of gasoline engines, the KIVA computer program has been developed and used for the analysis of combustion. In this paper, the calculations of combustion phenomena in DI diesel engines are performed by modifying the KIVA program so as to be applicable to multi-hole nozzles and arbitrary patterns of injection rate. The thermophysical and ther-mochemical properties of gasoline are altered to those diesel fuel. In order to investigate the ability of this modified program, the calculations are compared with the experiments on single cylinder engines concerning the pressure, flame temperature and mass change of chemical species in cylinders. Furthermore, the calculation for the heavy duty DI diesel engine is performed with this diesel combustion program.
Technical Paper

A Light Scattering and Holographic Technique for Determining Droplet Size and Volume Density Distribution in Diesel Fuel Sprays

1982-02-01
820355
In a diesel engine, the mixing of the fuel spray and in-cylinder air controls rate of beat release during combustion, namely it will determine the thermal efficiency, maximum output and gas or noise emission, etc. Therefore, it is important to measure the droplet size and its volume density distribution in diesel fuel sprays. The optical measuring method, which includes a light scattering and holographic technique, seems the only feasible method for analysing these unsteady characteristics of fuel sprays. The light scattering technique described herein was based upon Mie scattering theory, and the droplet size and volume density distribution of fuel sprays were calculated from the combination of the light extinction and the forward-to-backscattering ratio of Mie scattering intensity. The volume density and droplet size distribution of fuel sprays were obtained from the light intensity distribution on a photograph of fuel sprays.
Technical Paper

A New Concept for Low Emission Diesel Combustion

1997-02-24
970891
A new concept for diesel combustion was investigated by means of numerical simulation, engine experiment, and combustion observation in order to realize a simultaneous reduction of NOx and particulate emission. This concept (HiMICS: Homogeneous charge intelligent Multiple Injection Combustion System) is based on pre-mixed compression ignition combustion combined with multiple injection. Combustion characteristics of HiMICS concept was investigated by comparing with both a standard single injection and a pilot injection. In HiMICS concept, the pre-mixture is formed by a preliminary injection performed during a period from the early stage of the induction stroke to the middle stage of the compression stroke. Modified KIVA-II code was used to predict engine performances and emissions of each injection method. The simulation results show a capability of considerable improvement in the trade-off relation between NOx emissions and fuel consumption of HiMICS.
Technical Paper

A New Concept for Low Emission Diesel Combustion (2nd Rep. : Reduction of HC and CO Emission, and Improvement of Fuel Consumption by EGR and MTBE Blended Fuel)

1998-08-11
981933
A new concept for diesel combustion has been investigated by means of engine experiments and combustion observations in order to realize a simultaneous reduction of NOx and particulate emissions. The concept is based on pre-mixed compression ignition combustion combined with multiple injection. In this method, some part of fuel is injected at an early stage of the process to form a homogeneous lean pre-mixture, then the remaining fuel is injected at around the TDC in the same manner as a conventional diesel injection. The emissions, ROHR (rate of heat release), and combustion pictures of conventional combustion, pilot injection combustion, and this new combustion concept were compared and analyzed. Engine tests were carried out using a single cylinder research engine equipped with a common rail injection system.
Technical Paper

A Study of a New Aftertreatment System (1): A New Dosing Device for Enhancing Low Temperature Performance of Urea-SCR

2006-04-03
2006-01-0642
In order to reduce diesel NOx emissions, aftertreatment methods including LNT (Lean NOx Trap) and urea SCR (Selective Catalytic Reduction) have been researched. One of the shortcomings of urea SCR is its NOx reduction performance degradation at low exhaust gas temperatures and possible emission of unregulated byproducts. Here, a new type of a urea-dosing device to overcome these shortcomings is studied. This dosing device actively produces ammonia without depending upon the exhaust gas temperature, and designed for onboard application. The device incorporates an electrically heated bypass with a hydrolysis catalyst. An injector supplies urea solution into the bypass. The bypass is heated only when thermolysis is needed to produce ammonia (NH3). The hydrolysis catalyst further assists in the production of NH3. The ammonia gas obtained is then mixed with the main exhaust gas flow.
Technical Paper

A Study of the Rankine Cycle Generating System for Heavy Duty HV Trucks

2014-04-01
2014-01-0678
In heavy duty (HD) trucks cruising on expressway, about 60% of input fuel energy is wasted as losses. So it is important to recover them to improve fuel economy of them. As a waste heat recovery system, a Rankine cycle generating system was selected. And this paper mainly reports it. In this study, engine coolant was determined as main heat source, which collected energies of an engine cooling, an EGR gas and an exhaust gas, for collecting stable energy as much as possible. And the exergy of heat source was raised by increase coolant temperature to 105 deg C. As for improving the system efficiency, saturation temperature difference was expanded by improving performance of heat exchanger and by using high pressure turbine. And a recuperator which exchanges heat in working fluid between expander outlet and evaporator inlet was installed to recover the heat of working fluid at turbine generator. Then a working fluid pump was improved to reduce power consumption of the system.
Technical Paper

A Study on Cam Wear Mechanism with a Newly Developed Friction Measurement Apparatus

1998-10-19
982663
The requirements for emission control, lower fuel consumption and higher engine output have changed the engine valve train system to 4-valve/cylinder and higher cam lift designs, and these changes make the cam/tappet lubrication conditions more severe than before. Under such a working condition, there is a high possibility that cam/tappet surface damages such as scuffing, pitting and wear may occur. Among the damages, the wear of cam/tappet is the most difficult to predict since the wear mechanism still remains unclear. To understand the lubrication condition and therefore, the wear mechanism at the cam/tappet contact, friction was measured with a newly developed apparatus. Measurement results showed that the lubrication condition between cam and tappet is predominantly in the mixed and boundary lubrication conditions.
Technical Paper

A Study on Reducing Cooling loss in a Partially Insulated Piston for Diesel Engine

2018-04-03
2018-01-1276
To improve the thermal efficiency of an engine, it is particularly important to reduce the cooling loss from the combustion gas to the combustion chamber wall, which constitutes a major proportion of the total loss [1]. Previous studies addressing cooling loss reduction attempted to use ceramic in place of the conventional aluminum or iron alloys, but this led to a reduction in the volumetric efficiency and increased smoke emissions. This was caused by the ceramics having both a low thermal conductivity and high heat capacity, relative to aluminum and iron. These characteristics cause the piston wall temperature, which rises during combustion, to remain high during the intake stroke, thus increasing the intake temperature and reducing the volumetric efficiency. This increases the smoke emissions [2].
Technical Paper

A Study on the Mechanism of Engine Oil Consumption- Oil Upwards Transport via Piston Oil Ring Gap -

2011-04-12
2011-01-1402
Reduction of oil consumption of engines is required to avoid a negative effect on engine after treatment devices. Engines are required fuel economy for reduction of carbon-dioxide emission, and it is known that reduction of piston frictions is effective on fuel economy. However friction reduction of pistons sometimes causes an increase in engine oil consumption. Therefore reduction of engine oil consumption becomes important subject recently. The ultimate goal of this study is developing the estimation method of oil consumption, and the mechanism of oil upward transport at oil ring gap was investigated in this paper. Oil pressure under the oil ring lower rail was measured by newly developed apparatus. It was found that the piston slap motion and piston up and down motion affected oil pressure rise under the oil ring and oil was spouted through ring-gap by the pressure. The effect of the piston design on the oil pressure generation was also investigated.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 3rd Report: Effect of Piston Motion on Piston Skirt Oil Film Behavior

2006-10-16
2006-01-3349
The necessity of the reduction of the lubricating oil consumption of diesel engines has been increasing its importance to reduce the negative effect of exhausted oil on after treatment devices for exhausted gas. The final purpose of the studies is clarifying the mechanism of the oil consumption and developing the method of its estimation. For the basic study, the mechanism of oil film generation on the piston skirt could be explained by hydrodynamic lubrication in our first and second reports [1, 2]. In this paper, the piston skirt was calculated using the measured piston motion to clarify the effect of the piston motion to the piston skirt oil film behavior.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines - 4th Report: The Measurement of Oil Pressure Under the Piston Oil Ring -

2006-10-16
2006-01-3440
Clarifying the mechanism of the oil consumption of engines is necessary for developing its estimation method. Oil moves upwards on the piston to the combustion chamber through ring sliding surfaces, ring backs and ring gaps. The mechanisms of oil upwards transport through the ring gaps are hardly analyzed. In this report, oil pressure just under the oil ring was successfully measured by newly developed method to clarify the oil transport mechanism at the ring gap. It was showed that the generated oil pressure pushed up the oil at the ring gap.
Technical Paper

A Study on the Mechanism of Lubricating Oil Consumption of Diesel Engines -1st report: The Effect of the Design of Piston Skirt on Lubricating Oil Consumption-

2005-05-11
2005-01-2169
Decrease of engine lubricating oil consumption is necessary to reduce environmental impact. Usually oil consumption is estimated experimentally at the engine development stage, and it is expensive in terms of both time and cost. Therefore it is essential to develop its calculation method. The purposes of this study are clarifying the mechanism of engine lubricating oil consumption and developing the calculation method for the estimation of oil consumption. In this report, oil film on the piston skirt, which affected on oil volume supplied to the oil ring, was observed. Furthermore the effect of piston skirt design on oil consumption was investigated. Findings showed that the splashed oil on the cylinder liner had much effect on the oil film on the piston skirt hence oil consumption. It was suggested that the splashed oil on the cylinder liner affected on supply oil volume and it should be considered in the calculation of oil consumption.
Technical Paper

Advanced Boost-up in Hino EP100-II Turbocharged and Charge-Cooled Diesel Engine

1987-02-01
870298
Hino Motors, Ltd. has added to its line of charge-cooled engines for heavy duty trucks a higher power version which is called EP100-II. To meet the recent customers' demands for rapid transportation with better fuel economy, this engine was developed on the uprating program for the original EP100 which was introduced in 1981 as the first Japanese turbo-charged and air to air chrge-cooled engine. EP100-II has the same displacement as the original EP100, 8.8 liters, and is an in-line six cylinder engine with 228kW (310PS)/2,100rpm (JIS) output that provides the world's utmost level specific output of 25.8 kW (35.1PS)/ liter. Also this engine achieved a maximum BMEP of 16.8 bar/1,300 rpm and best BSFC of 199 gr/kWh at 1,500 rpm. This paper describes the advanced technology for increasing horsepower and improving fuel consumption such as the so-called multi harmonized inertia charging system, the electronically controlled waste gate valve of turbocharger.
Technical Paper

Application off a Mixed Flow Fan for Quiet Heavy-Duty Vehicles

1986-11-01
861945
As a result of the stringent noise regulations for heavy-duty vehicles, the use of shields and enclosures for engine compartment has been increasingly applied, but it is difficult for a conventional axial flow fan to provide the required airflow against higher resistance caused by such shields and enclosures. To solve this problem, a new, mixed flow fan (hereafter called MF fan) which is suitable for the higher resistance has been developed and this paper describes the development process of the MF fan. The design criteria of the MF fan were experimentally investigated with a test rig, and an optimum combination of design parameters were established. The airflow was improved approximately 6 % without any additional power loss in comparison with the conventional axial flow fan.
Technical Paper

Characteristics of Diesel Engine Oil for Heavy Duty Commercial Vehicles Achieving for both Fuel Economy and Reliability

2019-12-19
2019-01-2243
When the engine oil evaporates in the crankcase, it is necessary to discharge to the outside of the engine or returns to the intake air as part of blow-by gas. The amount of oil content in the blow-by gas is preferable to be as small as possible. This paper researched the evaporation characteristics of diesel engine oil for heavy duty into blow-by gas using 5W-30 and 10W-30 engine oils with the equivalent to Noack. As a result, it is found that evaporate phenomenon cannot be explained well enough by just Noack and clarified of the oil evaporation mechanism in blow-by gas.
Technical Paper

Characteristics of Diesel Soot Suppression with Soluble Fuel Additives

1987-09-01
871612
Experiments on a large number of soluble fuel additives were systematically conducted for diesel soot reduction. It was found that Ca and Ba were the most effective soot suppressors. The main determinants of soot reduction were: the metal mol-content of the fuel, the excess air factor, and the gas turbulence in the combustion chamber. The soot reduction ratio was expressed by an exponential function of the metal mol-content in the fuel, depending on the metal but independent of the metal compound. A rise in excess air factor or gas turbulence increased the value of a coefficient in the function, resulting in larger reductions in soot with the fuel additives. High-speed soot sampling from the cylinder showed that with the metal additive, the soot concentration in the combustion chamber was substantially reduced during the whole period of combustion. It is thought that the additive acts as a catalyst not only to improve soot oxidation but also to suppress soot formation.
Technical Paper

Development of CNG/Diesel Dual-Compatible Engine Oil for Heavy-Duty Trucks in Thailand

2017-10-08
2017-01-2350
In Thailand, most heavy-duty trucks were equipped with diesel engine, while a small portion was equipped with compressed natural gas (CNG) engine. However, in the past few years the number of CNG fuel trucks in Thailand has increased significantly due to the cheaper cost of CNG. In general, the emphasis of heavy-duty diesel engine oil performance is on piston cleanliness and soot handling properties, while thermal and anti-oxidation properties are most critical for CNG engine oil performance. For truck fleet owners who operate both types of trucks, using the inappropriate oil that is not fit-for-purpose can adversely affect engine performance and reduce engine service lifespan under prolonged usage. A novel CNG/diesel engine oil was developed to meet both JASO DH-2 heavy-duty diesel engine oil performance and CNG engine oil performance. The candidate formulation was proved adequately fit for practical use regarding to thermal and anti-oxidation properties.
Technical Paper

Development of Diesel Combustion for Commercial Vehicles

1997-08-06
972685
Historically the high speed diesel engine for commercial vehicles has been developed along with its combustion system in compliance with political and economical changes. After the 1970's, stricter exhaust emission regulations and fuel economy requirements induced combustion developments and application of turbocharged and inter cooled engines. From the late 1980's, high pressure fuel injection has been investigated and recognized as an essential tool for lowering emissions especially of particulate matter. Although turbulence effects on both in-cylinder air motion and during the combustion process are quite effective, they show different phenomena in conventional and advanced high pressure fuel injection systems. In the 1990's, multiple injection with high pressure has been attempted for further reduction of NOx and particulate matter.
Technical Paper

Development of Fuel Economy Engine Oil for Heavy Duty Diesel Engine

2015-09-01
2015-01-2034
More stringent emissions regulations, fuel economy standards, and regulations are currently being discussed to help reduce both CO2 and exhaust emissions. Vehicle manufacturers have been developing new engine technologies, such as downsizing and down-speeding with reduced friction loss, improved engine combustion and efficiency, heat loss recycling, power-train friction loss recycling, and reduced power-train friction loss. The use of more efficient fuel economy 5W-30 engine oils for heavy duty commercial vehicles has started to expand since 2009 in Japan as one technological solution to help reduce CO2 emissions. However, fuel economy 5W-30 oils for use in heavy duty vehicles in Europe are mainly based on synthetic oils, which are much expensive than the mineral oils that are predominantly used in Japan.
Technical Paper

Development of Hino Turbocharged Diesel Engines

1984-02-01
840015
A historical review of Japanese turbocharged diesel engines for heavy duty vehicles is described, and newly developed turbocharged diesel engines of HINO are introduced. The design features of these engines include new turbocharging technologies such as highly backward curved impeller for compressor blade, variable controlled inertia charging and waste gate. Laboratory and field test results demonstrated better fuel economy and improved low speed and transient torque characteristics than the predecessors. Several operational experiences, technical analysis and reliability problems are discussed.
X