Refine Your Search

Topic

Author

Search Results

Journal Article

Analysis of Thermal and Chemical Effects on Negative Valve Overlap Period Energy Recovery for Low-Temperature Gasoline Combustion

2015-09-06
2015-24-2451
A central challenge for efficient auto-ignition controlled low-temperature gasoline combustion (LTGC) engines has been achieving the combustion phasing needed to reach stable performance over a wide operating regime. The negative valve overlap (NVO) strategy has been explored as a way to improve combustion stability through a combination of charge heating and altered reactivity via a recompression stroke with a pilot fuel injection. The study objective was to analyze the thermal and chemical effects on NVO-period energy recovery. The analysis leveraged experimental gas sampling results obtained from a single-cylinder LTGC engine along with cylinder pressure measurements and custom data reduction methods used to estimate period thermodynamic properties. The engine was fueled by either iso-octane or ethanol, and operated under sweeps of NVO-period oxygen concentration, injection timing, and fueling rate.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

2013-04-08
2013-01-1144
The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part II - Blend Properties and Target Value Sensitivity

2013-04-08
2013-01-1126
Higher carbon number alcohols offer an opportunity to meet the Renewable Fuel Standard (RFS2) and improve the energy content, petroleum displacement, and/or knock resistance of gasoline-alcohol blends from traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part II of this paper builds upon the alcohol selection, fuel implementation scenarios, criteria target values, and property prediction methodologies detailed in Part I. For each scenario, optimization schemes include maximizing energy content, knock resistance, or petroleum displacement. Optimum blend composition is very sensitive to energy content, knock resistance, vapor pressure, and oxygen content criteria target values. Iso-propanol is favored in both scenarios' suitable blends because of its high RON value.
Journal Article

Characterization of Hydrocarbon Emissions from Gasoline Direct-Injection Compression Ignition Engine Operating on a Higher Reactivity Gasoline Fuel

2017-03-28
2017-01-0747
Low temperature combustion engine technologies are being investigated for high efficiency and low emissions. However, such engine technologies often produce higher engine-out hydrocarbon (HC) and carbon monoxide (CO) emissions, and their operating range is limited by the fuel properties. In this study, two different fuels, a US market gasoline containing 10% ethanol (RON 92 E10) and a higher reactivity gasoline (RON 80 E0), were compared on Delphi’s second generation Gasoline Direct-Injection Compression Ignition (Gen 2.0 GDCI) multi-cylinder engine. The engine was evaluated at three operating points ranging from a light load condition (800 rpm/2 bar IMEPg) to medium load conditions (1500 rpm/6 bar and 2000 rpm/10 bar IMEPg). The engine was equipped with two oxidation catalysts, between which was located the exhaust gas recirculation (EGR) inlet. Samples were taken at engine-out, between the catalysts, and at tailpipe locations.
Technical Paper

Combustion Characteristics of PRF and TSF Ethanol Blends with RON 98 in an Instrumented CFR Engine

2018-09-10
2018-01-1672
The CFR F1 engine is the standard testing apparatus used for rating the research octane number (RON) of gasoline fuels. Unlike the motor octane number (MON) method, where the intake port temperature after the carburetor is controlled by an electric heater, the mixture temperature can vary during the RON test due to the heat of vaporization (HoV) of the fuel. Ethanol is receiving increasing attention as a high octane and high HoV fuel component. This work presents an analysis of the combustion characteristics during the RON rating of ethanol fuel blends according to the standard ASTM D2699 method, highlighting the effects of ethanol concentration and base fuel composition. All fuels were blended to a constant RON of 98. Ethanol levels varied from 0 to 50 vol% and the base fuels were surrogate blends composed of primary reference fuels (PRF), toluene standardization fuels (TSF), and a four component gasoline surrogate.
Journal Article

Compatibility Assessment of Elastomer Materials to Test Fuels Representing Gasoline Blends Containing Ethanol and Isobutanol

2014-04-01
2014-01-1462
The compatibility of elastomeric materials used in fuel storage and dispensing applications was determined for test fuels representing neat gasoline and gasoline blends containing 10 and 17 vol.% ethanol, and 16 and 24 vol.% isobutanol. The actual test fuel chemistries were based on the aggressive formulations described in SAE J1681 for oxygenated gasoline. Elastomer specimens of fluorocarbon, fluorosilicone, acrylonitrile rubber (NBR), polyurethane, neoprene, styrene butadiene rubber (SBR) and silicone were exposed to the test fuels for 4 weeks at 60°C. After measuring the wetted volume and hardness, the specimens were dried for 20 hours at 60°C and then remeasured for volume and hardness. Dynamic mechanical analysis (DMA) was also performed to determine the glass transition temperature (Tg). Comparison to the original values showed that all elastomer materials experienced volume expansion and softening when wetted by the test fuels.
Journal Article

Compatibility Assessment of Plastic Infrastructure Materials to Test Fuels Representing Gasoline Blends Containing Ethanol and Isobutanol

2014-04-01
2014-01-1465
The compatibility of plastic materials used in gasoline storage and dispensing applications was determined for test fuels representing neat gasoline (Fuel C), and blends containing 25% ethanol (CE25a), 16% isobutanol (CiBu16a), and 24% isobutanol (CiBu24a). A solubility analysis was also performed and compared to the volume swell results obtained from the test fuel exposures. The plastic specimens were exposed to each test fuel for16 weeks at 60°C. After measuring the wetted volume and hardness, the specimens were dried for 65 hours at 60°C and then remeasured for volume and hardness. Dynamic mechanical analysis (DMA), which measures the storage modulus as a function of temperature, was also performed on the dried specimens to determine the temperature associated with the onset of the glass-to-rubber transition (Tg). For many of the plastic materials, the solubility analysis was able to predict the relative volume swell for each test fuel.
Journal Article

Compatibility Assessment of Plastic Infrastructure Materials with Test Fuels Representing E10 and iBu16

2015-04-14
2015-01-0894
The compatibility of plastic materials used in fuel storage and dispensing applications was determined for a test fuel representing gasoline blended with 10% ethanol. Prior investigations were performed on gasoline fuels containing 25, 50 and 85% ethanol, but the knowledge gap existing from 0 to 25% ethanol precluded accurate compatibility assessment of low level blends, especially for the current E10 fuel (gasoline containing 10% ethanol) used in most filling stations, and the recently accepted E15 fuel blend (gasoline blended with up to15% ethanol). For the majority of the plastic materials evaluated in this study, the wet volume swell (which is the parameter most commonly used to assess compatibility) was higher for fuels containing 25% ethanol, while the volume swell accompanying E10 was much lower.
Journal Article

Compatibility of Fuel System Elastomers with Bio-Blendstock Fuel Candidates Using Hansen Solubility Analysis

2017-03-28
2017-01-0802
The compatibility of key fuel system infrastructure elastomers with promising bio-blendstock fuel candidates was examined using Hansen solubility analysis. Thirty-four candidate fuels were evaluated in this study including multiple alcohols, esters, ethers, ketones, alkenes and one alkane. These compounds were evaluated as neat molecules and as blends with the gasoline surrogate, dodecane and a mix of dodecane and 10% ethanol (E10D). The elastomer materials were fluorocarbon, acrylonitrile butadiene rubber (NBR), styrene butadiene (SBR), neoprene, polyurethane and silicone. These materials have been rigorously studied with other fuel types, and their measured volume change results were found to correspond well with their predicted solubility levels. The alcohols showed probable compatibility with fluorocarbon and polyurethane, but are not likely to be compatible at low blend levels with NBR and SBR.
Technical Paper

Detailed Morphological Properties of Nanoparticles from Gasoline Direct Injection Engine Combustion of Ethanol Blends

2013-09-08
2013-24-0185
Detailed properties of particulate matter (PM) emissions from a gasoline direct injection (GDI) engine were analyzed in terms of size, morphology, and nanostructures, as gasoline and its ethanol blend E20 were used as a fuel. PM emissions were sampled from a 0.55L single-cylinder GDI engine by means of a scanning mobility particle sizer (SMPS) for size measurements and a self-designed thermophoretic sampling device for the subsequent analyses of size, morphology and nanostructures using a transmission electron microscope (TEM). The particle sizes were evaluated with variations of air-fuel equivalence ratio and fuel injection timing. The most important result from the SMPS measurements was that the number of nucleation-mode nanoparticles (particularly those smaller than 10 - 15 nm) increased significantly as the fuel injection timing was advanced to the end-of-injection angle of 310° bTDC.
Journal Article

Determination of the R Factor for Fuel Economy Calculations Using Ethanol-Blended Fuels over Two Test Cycles

2014-04-01
2014-01-1572
During the 1980s, the U.S. Environmental Protection Agency (EPA) incorporated the R factor into fuel economy calculations in order to address concerns about the impacts of test fuel property variations on corporate average fuel economy (CAFE) compliance, which is determined using the Federal Test Procedure (FTP) and Highway Fuel Economy Test (HFET) cycles. The R factor is defined as the ratio of the percent change in fuel economy to the percent change in volumetric heating value for tests conducted using two differing fuels. At the time the R-factor was devised, tests using representative vehicles initially indicated that an appropriate value for the R factor was 0.6. Reassessing the R factor has recently come under renewed interest after EPA's March 2013 proposal to adjust the properties of certification gasoline to contain significant amounts of ethanol.
Journal Article

Development of Dual-Fuel Low Temperature Combustion Strategy in a Multi-Cylinder Heavy-Duty Compression Ignition Engine Using Conventional and Alternative Fuels

2013-09-24
2013-01-2422
Low temperature combustion through in-cylinder blending of fuels with different reactivity offers the potential to improve engine efficiency while yielding low engine-out NOx and soot emissions. A Navistar MaxxForce 13 heavy-duty compression ignition engine was modified to run with two separate fuel systems, aiming to utilize fuel reactivity to demonstrate a technical path towards high engine efficiency. The dual-fuel engine has a geometric compression ratio of 14 and uses sequential, multi-port-injection of a low reactivity fuel in combination with in-cylinder direct injection of diesel. Through control of in-cylinder charge reactivity and reactivity stratification, the engine combustion process can be tailored towards high efficiency and low engine-out emissions. Engine testing was conducted at 1200 rpm over a load sweep.
Technical Paper

Development of Gasoline Combustion Reaction Model

2013-04-08
2013-01-0887
Gasoline includes various kinds of chemical species. Thus, the reaction model of gasoline components that includes the low-temperature oxidation and ignition reaction is necessary to investigate the method to control the combustion process of the gasoline engine. In this study, a gasoline combustion reaction model including n-paraffin, iso-paraffin, olefin, naphthene, alcohol, ether, and aromatic compound was developed. KUCRS (Knowledge-basing Utilities for Complex Reaction Systems) [1] was modified to produce paraffin, olefin, naphthene, alcohol automatically. Also, the toluene reactions of gasoline surrogate model developed by Sakai et al. [2] including toluene, PRF (Primary Reference Fuel), ethanol, and ETBE (Ethyl-tert-butyl-ether) were modified. The universal rule of the reaction mechanisms and rate constants were clarified by using quantum chemical calculation.
Technical Paper

Effect of E85 on RCCI Performance and Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2012-04-16
2012-01-0376
This paper investigates the effect of E85 on load expansion and FTP modal point emissions indices under reactivity controlled compression ignition (RCCI) operation on a light-duty multi-cylinder diesel engine. A General Motors (GM) 1.9L four-cylinder diesel engine with the stock compression ratio of 17.5:1, common rail diesel injection system, high-pressure exhaust gas recirculation (EGR) system and variable geometry turbocharger was modified to allow for port fuel injection with gasoline or E85. Controlling the fuel reactivity in-cylinder by the adjustment of the ratio of premixed low-reactivity fuel (gasoline or E85) to direct injected high reactivity fuel (diesel fuel) has been shown to extend the operating range of high-efficiency clean combustion (HECC) compared to the use of a single fuel alone as in homogeneous charge compression ignition (HCCI) or premixed charge compression ignition (PCCI).
Technical Paper

Effect of Mixture Stratification and Fuel Reactivity on Dual-Fuel Compression Ignition Combustion Process for SI-Based Engine

2016-10-17
2016-01-2304
Compression ignition combustion with a lean mixture has high potential in terms of high theoretical thermal efficiency and low NOx emission characteristics due to low combustion temperatures. In particular, a Dual-Fuel concept is proposed to achieve high ignition timing controllability and an extended operation range. This concept controls ignition timing by adjusting the fraction of two fuels with different ignition characteristics. However, a rapid combustion process after initial ignition cannot be avoided due to the homogenous nature of the fuel mixture, because the combustion process depends entirely on the high reaction rate of thermal ignition. In this study, the effect of mixture stratification in the cylinder on the combustion process after ignition based on the Dual-Fuel concept was investigated. Port injection of one fuel creates the homogeneous mixture, while direct injection of the other fuel prepares a stratified mixture in the cylinder at the compression stroke.
Journal Article

Effects of Biofuel Blends on RCCI Combustion in a Light-Duty, Multi-Cylinder Diesel Engine

2013-04-08
2013-01-1653
Reactivity Controlled Compression Ignition (RCCI) is an engine combustion strategy that utilizes in-cylinder fuel blending to produce low NOx and PM emissions while maintaining high thermal efficiency. Previous RCCI research has been investigated in single-cylinder heavy-duty engines [1, 2, 3, 4, 5, 6]. The current study investigates RCCI operation in a light-duty multi-cylinder engine over a wide number of operating points representing vehicle operation over the US EPA FTP test. Similarly, previous RCCI engine experiments have used petroleum based fuels such as ultra-low sulfur diesel fuel (ULSD) and gasoline, with some work done using high percentages of biofuels, namely E85 [7]. The current study was conducted to examine RCCI performance with moderate biofuel blends, such as E20 and B20, as compared to conventional gasoline and ULSD.
Technical Paper

Effects of Ethanol Additives on Diesel Particulate and NOx Emissions

2001-05-07
2001-01-1937
Particulate and nitrogen oxide emissions from a 1.9-liter Volkswagen diesel engine were measured for three different fuels: neat diesel fuel, a blend of diesel fuel with 10% ethanol, and a blend of diesel fuel with 15% ethanol. Engine-out emissions were measured on an engine dynamometer for five different speeds and five different torques using the standard engine-control unit. Results show that particulate emissions can be significantly reduced over approximately two-thirds of the engine map by using a diesel-ethanol blend. Nitrogen oxide emissions can also be significantly reduced over a smaller portion of the engine map by using a diesel-ethanol blend. Moreover, there is an overlap between the regions where particulate emissions can be reduced by up to 75% and nitrogen oxide emissions are reduced by up to 84% compared with neat diesel fuel.
Journal Article

Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

2016-04-05
2016-01-0715
Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, isooctane, toluene, and ethanol. Laminar flame speeds for these mixtures, which are calculated using two different methods (an energy fraction mixing rule and a detailed kinetic simulation), span a range of about 6 cm/s. A nominal load of 350 kPa IMEPg at 2000 rpm is maintained with constant fueling and varying CA50 from 8-20 CAD aTDCf. EGR is increased until a COV of IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds have increased EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned.
Journal Article

Effects of Fuel Laminar Flame Speed Compared to Engine Tumble Ratio, Ignition Energy, and Injection Strategy on Lean and EGR Dilute Spark Ignition Combustion

2017-03-28
2017-01-0671
Previous studies have shown that fuels with higher laminar flame speed also have increased tolerance to EGR dilution. In this work, the effects of fuel laminar flame speed on both lean and EGR dilute spark ignition combustion stability were examined. Fuels blends of pure components (iso-octane, n-heptane, toluene, ethanol, and methanol) were derived at two levels of laminar flame speed. Each fuel blend was tested in a single-cylinder spark-ignition engine under both lean-out and EGR dilution sweeps until the coefficient of variance of indicated mean effective pressure increased above thresholds of 3% and 5%. The relative importance of fuel laminar flame speed to changes to engine design parameters (spark ignition energy, tumble ratio, and port vs. direct injection) was also assessed.
Journal Article

Effects of Lambda on Knocking Characteristics and RON Rating

2019-04-02
2019-01-0627
The knock resistance of fuels has been historically measured using the ASTM RON and MON methods. However, significant discrepancies between the fuel octane number and knock-limited performance in modern spark-ignited (SI) engines have been well-documented. Differences between the operating conditions of the Cooperative Fuels Research (CFR) engine during RON rating and those attained in modern SI engines have been highlighted in the literature. While octane ratings are performed for each fuel on the CFR engine at the lambda that provides the highest knockmeter reading, modern SI engines are generally operated at stoichiometry and knock intensity is based on the high frequency cylinder pressure oscillations associated with knocking combustion. In the present work, an instrumented CFR engine was used to analyze lambda effects on both the conventional knockmeter RON rating method and cylinder pressure transducer based knock intensity.
X