Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

1-D Simulation Model Developed for a General Purpose Engine

2016-11-08
2016-32-0030
In recent years, improvements in the fuel economy and exhaust emission performance of internal combustion engines have been increasingly required by regulatory agencies. One of the salient concerns regarding general purpose engines is the larger amount of CO emissions with which they are associated, compared with CO emissions from automobile engines. To reduce CO and other exhaust emissions while maintaining high fuel efficiency, the optimization of total engine system, including various design parameters, is essential. In the engine system optimization process, cycle simulation using 0-D and 1-D engine models are highly useful. To define an optimum design, the model used for the cycle simulation must be capable of predicting the effects of various parameters on the engine performance. In this study, a model for predicting the performance of a general purpose SI (Spark Ignited) engine is developed based on the commercially available engine simulation software, GT-POWER.
Technical Paper

2-Way Driven Compressor for Hybrid Vehicle Climate Control System

2004-03-08
2004-01-0906
The environment is one of the most important issues currently facing the world and the automobile industry is required to respond with eco-cars. To meet this requirement, the hybrid vehicle is one of the most optimal solutions. The hybrid system automatically stops engine idling (idling stop), or stops the engine during deceleration to recover energy. The engine stop however creates a problem concerning the vehicle's climate control system. Because the conventional climate control system incorporates a compressor driven by engine belt, there is almost no cooling performance while the engine is stopped. Until now, when a driver needed more cooling comfort the engine has been switched back on as a compromise measure. To realize cabin comfort that is consistent with fuel saving, a 2-way driven compressor has been developed that can be driven both by engine belt while the engine is running and by electric motor when the engine is stopped.
Technical Paper

52 Development of a Four-stroke Engine with Turbo Charger for Personal Watercraft

2002-10-29
2002-32-1821
There is a movement to apply emission control in a marine engine as well due to high public awareness of environmental concern in the United States. We started at the development of 3-seater Personal Watercraft (PWC) equipped with 4-stroke engines in taking environment conformity and potential into account. The PWC employed series 4-cylinder 1100cc displacement engine that has been used for mass production motorcycles. The engine was modified to satisfy requirements for PWC, as a marine engine, such as performance function and corrosion. In order to achieve greater or equal power/weight ratio as against two-stroke PWCs, a four-stroke engine for PWC with an exhaust turbo charger was developed. As a result, we succeeded in developing an engine that attained top-level running performance and durability superior to competitors' 2-stroke engines.
Technical Paper

A Comparative Evaluation of Pedestrian Kinematics and Injury Prediction for Adults and Children upon Impact with a Passenger Car

2004-03-08
2004-01-1606
Studies show that the pedestrian population at high risk of injury consists of both young children and adults. The goal of this study is to gain understanding in the mechanisms that lead to injuries for children and adults. Multi-body pedestrian human models of two specific anthropometries, a 6year-old child and a 50th percentile adult male, are applied. A vehicle model is developed that consists of a detailed rigid finite element mesh, validated stiffness regions, stiff structures underlying the hood and a suspension model. Simulations are performed in a test matrix where anthropometry, impact speed and impact location are variables. Bumper impact occurs with the tibia of the 50th percentile adult male and with the thigh of the 6-year-old child. The head of a 50th percentile male impacts the lower windshield, while the 6-year-old child's head impacts the front part of the hood.
Technical Paper

A Comparison of Sacroiliac and Pubic Rami Fracture Occurrences in Oblique Side Impact Tests on Nine Post Mortem Human Subjects

2015-11-09
2015-22-0002
The WorldSID dummy can be equipped with both a pubic and a sacroiliac joint (S-I joint) loadcell. Although a pubic force criterion and the associated injury risk curve are currently available and used in regulation (ECE95, FMVSS214), as of today injury mechanisms, injury criteria, and injury assessment reference values are not available for the sacroiliac joint itself. The aim of this study was to investigate the sacroiliac joint injury mechanism. Three configurations were identified from full-scale car crashes conducted with the WorldSID 50th percentile male where the force passing through the pubis in all three tests was approximately 1500 N while the sacroiliac Fy / Mx peak values were 4500 N / 50 Nm, 2400 N / 130 Nm, and 5300 N / 150 Nm, respectively. These tests were reproduced using a 150 kg guided probe impacting Post Mortem Human Subjects (PMHS) at 8 m/s, 5.4 m/s and 7.5 m/s.
Technical Paper

A Computer Simulation for Motorcycle Rider–Motion in Collision

2003-09-15
2003-32-0044
A computer simulation method for motorcycle rider motion in a collision on a passenger car has been developed. The computer simulation results were in two cases of collision, at 45 degree and 90 degree angles against the side of a passenger car. The simulated results were compared to the test results for validation. The simulation software of explicit finite element method (FEM) has been used, because of its capability for expressing accurate shape and deformation. The mesh size was determined with consideration for simulation accuracy and calculation time, and an FEM model of a motorcycle, an airbag, a dummy, a helmet and a passenger car were built. To shorten the calculation time, a part of the model was regarded as a rigid body and eliminated from the contact areas. As a result, highly accurate dummy posture and head velocity at the time of contact on the ground were simulated in the two cases of collision.
Technical Paper

A High Power, Wide Torque Range, Efficient Engine with a Newly Developed Variablea-Valve-Lift and -Timing Mechanism

1989-02-01
890675
A variable valving system was developed. This system has two cam profiles, one for low speed and one for high speed. A 1.2-litre DOHC experimental engine using this system was made and mounted in the body of a 2-1itre class passenger car. Test results of this car were compared to those of the same car with its original engine. The test car showed better results in every area of driving performance, in mode-fuel-econorny and in noise tests. This paper presents the mechanism, operation and test results of this variable valving system, the 1.2-litre experimental engine and this passenger car. THE PERFORMANCE AND EFFICIENCY of the passenger car gasoline engine have been greatly improved: primarily as a response to exhaust-gas emission regulations and the oil crises. These improvements have been achieved mainly through the development of control technologies to optimize many parameters such as ignition timing and air fuel ratio precisely according to driving conditions.
Technical Paper

A Java Implementation of Future Automotive Systems Technology Simulator (FASTSim) Fuel Economy Simulation Code Modules

2018-04-03
2018-01-0412
Future Automotive Systems Technology Simulator (FASTSim) is a free and open-source tool developed by National Renewable Energy Lab (NREL). Among the attractive capabilities of the FASTSim is that it can perform computationally efficient fuel economy simulations of automotive vehicles with reasonable accuracy for standard or arbitrary drive cycles. The modeling capability includes vehicles with various types of powertrains such as: conventional vehicles (CVs), hybrid-electric vehicles (HEVs), plugin hybrid electric vehicles (PHEVs) and battery-only electric vehicles (BEVs). The public version of FASTSim available from NREL is implemented in Excel, which achieves the goal of good accessibility to a broad audience, but has some limitations, including: i) bottleneck in computations when importing arbitrary drive cycles, ii) slower computations in general than other scripting or programming languages, and iii) less portable to integration with other applications and/or other platforms.
Technical Paper

A Multi-Body Computational Study of the Kinematic and Injury Response of a Pedestrian with Variable Stance upon Impact with a Vehicle

2004-03-08
2004-01-1607
This research investigates the variation of pedestrian stance in pedestrian-automobile impact using a validated multi-body vehicle and human model. Detailed vehicle models of a small family car and a sport utility vehicle (SUV) are developed and validated for impact with a 50th percentile human male anthropometric ellipsoid model, and different pedestrian stances (struck limb forward, feet together, and struck limb backward) are investigated. The models calculate the physical trajectory of the multi-body models including head and torso accelerations, as well as pelvic force loads. This study shows that lower limb orientation during a pedestrian-automobile impact plays a dominant role in upper body kinematics of the pedestrian. Specifically, stance has a substantial effect on the subsequent impacts of the head and thorax with the vehicle. The variation in stance can change the severity of an injury incurred during an impact by changing the impact region.
Technical Paper

A New Concept for Occupant Deceleration Control during Vehicle Crashes -Study of the Vehicle Mass Separation Model

2003-10-27
2003-01-2761
In order to minimize occupant injury in a vehicle collision, an approach was attempted to address this issue by optimizing the waveform of the vehicle body deceleration to reduce the maximum deceleration applied to the occupant. A previous study has shown that the mathematical solution to the optimal vehicle deceleration waveform comprised three stages: high deceleration, negative deceleration, and constant deceleration. A kinematic model with separated mass of the vehicle was devised to generate the optimal vehicle deceleration waveform comprising three stages including a one with negative deceleration in the middle. The validity of this model has been confirmed by a mathematical study on a one-dimensional lumped mass model. The optimal vehicle deceleration waveform generated by this method was then validated by a three-dimensional dummy simulation.
Technical Paper

A New Concept for Occupant Deceleration Control in a Crash - Part 2

2003-03-03
2003-01-1228
In order to minimize occupant injury in a vehicle crash, an approach was attempted to address this issue by making the wave form of vehicle body deceleration optimal to lower the maximum value of the occupant deceleration. Prior study shows that the mathematical solutions for the optimal vehicle deceleration wave form feature consisting of three aspects: high deceleration, negative deceleration, and constant deceleration. A kinematical model which has separated mass of the vehicle was devised to generate an optimal vehicle deceleration wave form which consists of three segments including a segment of negative deceleration in the middle. The validity of this model has been certified by a mathematical study by using a one-dimensional lumped mass model. The effectiveness of the optimal vehicle deceleration wave form generated by this method was validated by a simulation with a three-dimensional dummy.
Technical Paper

A New V-8 Engine for the LEXUS LS 400

1989-09-01
892003
A new 4.0 liter V8 engine, 1UZ-FE, has been developed for the luxury sedan, LEXUS LS400. The engine has 4 camshafts and 32 valves, and weighs only 195 kg (430 lbs) having many light alloy components and carefully designed configurations. The appropriate engine displacement and high technology adopted throughout from design to manufacturing process enable the LS400 to run powerfully with excellent fuel economy and a pleasant sounds. It develops 250HP at 5600 rpm and 260ft-lbs of torque at 4400 rpm, and its fuel economy figure, well exceeds the EPA's tax charge level of 22.5mpg. These figures have been achieved through the newest technologies applied to every part of the design, such as: Well studied intake and exhaust systems, centrally located spark plug in the TOYOTA original four-valve combustion chamber, which has a narrow valve including angle, and low friction components like aluminum alloy valve lifters and well balanced moving parts.
Technical Paper

A Study of Cervical Spine Kinematics and Joint Capsule Strain in Rear Impacts using a Human FE Model

2006-11-06
2006-22-0020
Many efforts have been made to understand the mechanism of whiplash injury. Recently, the cervical facet joint capsules have been focused on as a potential site of injury. An experimental approach has been taken to analyze the vertebral motion and to estimate joint capsule stretch that was thought to be a potential cause of pain. The purpose of this study is to analyze the kinematics of the cervical facet joint using a human FE model in order to better understand the injury mechanism. The Total Human Model for Safety (THUMS) was used to visually analyze the local and global kinematics of the spine. Soft tissues in the neck were newly modeled and introduced into THUMS for estimating the loading level in rear impacts. The model was first validated against human test data in the literature by comparing vertebrae motion as well as head and neck responses. Joint capsule strain was estimated from a maximum principal strain output from the elements representing the capsule tissues.
Journal Article

A Study of Controlled Auto-Ignition in Small Natural Gas Engines

2013-10-15
2013-32-9098
Research has been conducted on Controlled Auto-Ignition (CAI) engine with natural gas. CAI engine has the potential to be highly efficient and to produce low emissions. CAI engine is potentially applicable to automobile engine. However due to narrow operating range, CAI engine for automobile engine which require various speed and load in real world operation is still remaining at research level. In comparison some natural gas engines for electricity generation only require continuous operation at constant load. There is possibility of efficiency enhancement by CAI combustion which is running same speed at constant load. Since natural gas is primary consisting of methane (CH4), high auto-ignition temperature is required to occur stable auto-ignition. Usually additional intake heat required to keep stable auto-ignition. To keep high compression temperature, single cylinder natural gas engine with high compression ratio (CR=26) was constructed.
Technical Paper

A Study of Driver Injury Mechanism in High Speed Lateral Impacts of Stock Car Auto Racing Using a Human Body FE Model

2011-04-12
2011-01-1104
This paper analyzed the mechanisms of injury in high speed, right-lateral impacts of stock car auto racing, and interaction of the occupant and the seat system for the purpose of reducing the risk of injury, primarily rib fractures. Many safety improvements have been made to stock car racing recently, including the Head and Neck Support devices (HANS®), the 6-point restraint harnesses, and the implementation of the SAFER Barrier. These improvements have contributed greatly to mitigating injury during the race crash event. However, there is still potential to improve the seat structure and the understanding of the interaction between the driver and the seat in the continuation of making racing safety improvements. This is particularly true in the case of right-lateral impacts where the primary interaction is between the seat supports and the driver and where the chest is the primary region of injury.
Technical Paper

A Study of Greenhouse Gas Emissions Reduction Opportunity in Light-Duty Vehicles by Analyzing Real Driving Patterns

2017-03-28
2017-01-1162
Electric drive vehicles (EDV) have the potential to greatly reduce greenhouse gas (GHG) emissions and thus, there are many policies in place to encourage the purchase and use of gasoline-hybrid, battery, plug-in hybrid, and fuel cell electric vehicles. But not all vehicles are the same, and households use vehicles in very different ways. What if policies took these differences into consideration with the goal of further reducing GHG emissions? This paper attempts to answer two questions: i) are there certain households that, by switching from a conventional vehicle to an EDV, would result in a comparatively large GHG reduction (as compared to other households making that switch), and, if so, ii) how large is the difference in GHG reductions? The paper considers over 65,000 actual GPS trip traces (generated by one-second interval recording of the speed of approximately 2,900 vehicles) collected by the 2013 California Household Travel Survey (CHTS).
Technical Paper

A Study of Knee Joint Kinematics and Mechanics using a Human FE Model

2005-11-09
2005-22-0006
Posterior translation of the tibia with respect to the femur can stretch the posterior cruciate ligament (PCL). Fifteen millimeters of relative displacement between the femur and tibia is known as the Injury Assessment Reference Value (IARV) for the PCL injury. Since the anterior protuberance of the tibial plateau can be the first site of contact when the knee is flexed, the knee bolster is generally designed with an inclined surface so as not to directly load the projection in frontal crashes. It should be noted, however, that the initial flexion angle of the occupant knee can vary among individuals and the knee flexion angle can change due to the occupant motion. The behavior of the tibial protuberance related to the knee flexion angle has not been described yet. The instantaneous angle of the knee joint at the timing of restraining the knee should be known to manage the geometry and functions of knee restraint devices.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

A Study on Shockless Combustion Change Control of Direct Injection Gasoline Engine

2004-10-25
2004-01-2940
A direct injection gasoline engine featuring a center-injection method that incorporates a high-pressure injector at the top center of the combustion chamber, has been developed. The engine is characterized by a significantly improved fuel economy and emissions performance as the result of the application of direct-injection stratified charge, DISC, which is one of the main features of the direct-injection engine. This paper describes a study on a change control method for switching between DISC and homogeneous charge combustion. The two forms of combustion employed in the new direct-injection engine differ in terms of combustion limits in relation to recirculated exhaust gas and air-fuel ratio. This causes the torque difference which is a specific issue in direct injection gasoline engines. The authors attempted to cope with the issue from the viewpoints of misfire prevention and fuel amount restriction in accordance with the torque required.
Technical Paper

A new concept for occupant deceleration control in a crash

2000-06-12
2000-05-0209
In order to minimize occupant injury in a vehicle crash, an approach was attempted to address this issue by making the wave form of vehicle body deceleration (deceleration curve) optimal to lower the maximum deceleration value applied to the occupant. A study with a one-dimensional, two-mass model was conducted to the kinetic mechanism between the body deceleration curve and the responding occupant''s motion while finding a mathematical solution for the optimal body deceleration curve. A common feature of the derived mathematical solutions is that they consist of three aspects: high deceleration, low or negative deceleration, and constant deceleration. This was demonstrated by simulation with a three-dimensional dummy. The results show that the response of the dummy closely agrees with that of the one-dimensional, two-mass model, thus proving the adequacy of the mathematical solution, and that occupant injury was reduced.
X