Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Design and Dynamic Analysis of Bounce and Pitch Plane Hydraulically Interconnected Suspension for Mining Vehicle to Improve Ride Comfort and Pitching Stiffness

2015-04-14
2015-01-0617
This paper demonstrates time response analysis of the mining vehicle with bounce and pitch plane hydraulically interconnected suspension (HIS) system. Since the mining vehicles working in harsh conditions inducing obvious pitch motion and the hard stiffness of suspensions leading to the acute vibration, the passive hydraulically interconnected system is proposed to provide better ride comfort. Furthermore, the hydraulic system also increases the suspension stiffness in the pitch mode to prevent vehicle from large pitch motions. According to the hydraulic and mechanical coupled characteristic of the mining vehicles, a 7degrees of freedom (7-DOFS) mathematical model is employed and the state space method is used to establish the mechanical and hydraulic coupled dynamic equations. In this paper, the vehicles are subjected to straight line braking input, triangle block bump input applied to the wheels and random road tests.
Technical Paper

Dynamic Characteristics Analysis of an Ambulance with Hydraulically Interconnected Suspension System

2018-04-03
2018-01-0815
The vibration and instability experienced in an ambulance can lead to secondary injury to a patient and discourage a paramedic from emergency care. This paper presents a hydraulically interconnected suspension (HIS) system which can achieve enhanced cooperative control of roll, pitch and bounce motion modes to improve the ambulance's ride comfort and handling performance. A lumped-mass model integrated with a mechanical and hydraulic coupled system is developed by using free-body diagram and transfer matrix methods. The mechanical-fluid boundary condition in the double-acting cylinders is modelled as an external force on the mechanical system and a moving boundary on the fluid system. A special modal analysis method is employed to reveal the vibration characteristics of the ambulance with the HIS.
Technical Paper

Hierarchical Control Strategy for Active Suspension Equipped with an Electromagnetic Actuator

2023-12-31
2023-01-7077
Electromagnetic suspension systems have increasingly gained widespread attention due to their superiority in improving ride comfort while providing fast response, excellent controllability and high mechanical efficiency, but their applications are limited due to the accuracy of the underlying control actuation tracking. For addressing this problem, this study presents a novel hierarchical control strategy for an electromagnetic active suspension (EMAS) system equipped with an electromagnetic actuator (EMA) structure. The structure of the EMA device and the working principle of the motion conversion model are introduced in detail first, and the motion conversion equation is derived based on the force-torque relationship. Based on this, a linear quadratic regulator (LQR) control method is proposed to be applied to a half-vehicle suspension system to improve the vibration isolation performance of the vehicle and ensure the ride comfort.
Technical Paper

Investigation of the Influence of an Hydraulically Interconnected Suspension (HIS) on Steady-State Cornering

2017-03-28
2017-01-0430
This paper introduces a vehicle model in CarSim, and replaces a portion of its standard suspension system with an HIS model built in an external software to implement co-simulations. The maneuver we employ to characterize the HIS vehicle is a constant radius method, i.e. observing the vehicle’s steering wheel angle by fixing its cornering radius and gradually increasing its longitudinal speed. The principles of the influence of HIS systems on cornering mainly focus on two factors: lateral load transfer and roll steer effect. The concept of the front lateral load transfer occupancy ratio (FLTOR) is proposed to evaluate the proportions of lateral load transfer at front and rear axles. The relationship between toe and suspension compression is dismissed firstly to demonstrate the effects of lateral load transfer and then introduced to illustrate the effects of roll motion on cornering.
Technical Paper

Lateral Dynamics and Suspension Tuning for a Two-Axle Bus Fitted with Roll-Resistant Hydraulically Interconnected Suspension

2018-04-03
2018-01-0831
In this paper, a new roll-plane hydraulically interconnected suspension (HIS) system is proposed to enhance the roll and lateral dynamics of a two-axle bus. It is well-known that the suspension tuning is of great importance in the design process and has also been explored in a number of studies, while only minimal efforts have been made for suspension tuning for the newly proposed HIS system especially considering lateral stability. This study aims to explore lateral dynamics and suspension tuning of a two-axle bus with HIS system, which could also provide valuable information for roll dynamics analysis. Based on a ten-DOFs lumped-mass full-car model of a bus either integrating transient mechanical-hydraulic model for HIS or the traditional suspension components, three newly promoted parameters of HIS system are defined and analyzed-namely the total roll stiffness (TRS), roll stiffness distribution ratio (RSDR) and roll-plane damping (RPD).
Journal Article

Vehicle Parameter Estimation Based on Full-Car Dynamic Testing

2015-04-14
2015-01-0636
Effectively obtaining physical parameters for vehicle dynamic model is the key to successfully performing any computer-based dynamic analysis, control strategy development or optimization. For a spring and lump mass vehicle model, which is a type of vehicle model widely used, its physical parameters include sprung mass, unsprung mass, inertial properties of the sprung mass, stiffness and damping coefficient of suspension and tire, etc. To minimize error, the paper proposes a method to estimate these parameters from vehicle modal parameters which are in turn obtained through full-car dynamic testing. To verify its effectiveness, a visual vehicle with a set of given parameters, build in the Adams(Automatic Dynamic Analysis of Mechanical Systems)/Car environment, is used to perform the dynamic testing and provide the testing data for the parameter estimation.
X