Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Direct 1D/3D (GT-SUITE/SimericsMP+) Coupled Computational Approach to Study the Impact of Engine Oil Pan Sloshing on Lubrication Pump Performance

2020-04-14
2020-01-1112
During a vehicle drive cycle, the oil in the engine oil pan sloshes very vigorously due to the acceleration of the vehicle. This can cause the pickup tube in the engine oil pan to become uncovered from oil and exposed to air, which affects the lubrication pump performance. Engine oil pan sloshing is inherently a 3D problem as the free oil surface is constantly changing. Multi-dimensional Computational Fluid Dynamics (CFD) methods are very useful to simulate such problems with high detail and accuracy but are computationally very expensive. Part of the engine lubrication system, such as the pump, can be modelled in 1D which can predict accurate results at relatively high computational speeds. By utilizing the advantages of both 1D and 3D CFD models, a coupled 1D-3D simulation approach has been developed to capture the detailed oil sloshing phenomenon in SimericsMP+ and the system level simulation is conducted in GT-SUITE where 3D spatial data is not required.
Technical Paper

A Mechanism-Based Thermomechanical Fatigue Life Assessment Method for High Temperature Engine Components with Gradient Effect Approximation

2019-04-02
2019-01-0536
High temperature components in internal combustion engines and exhaust systems must withstand severe mechanical and thermal cyclic loads throughout their lifetime. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermomechanical fatigue (TMF) of the material. Analytical tools are increasingly employed by designers and engineers for component durability assessment well before any hardware testing. The DTMF model for TMF life prediction, which assumes that micro-crack growth is the dominant damage mechanism, is capable of providing reliable predictions for a wide range of high-temperature components and materials in internal combustion engines. Thus far, the DTMF model has employed a local approach where surface stresses, strains, and temperatures are used to compute damage for estimating the number of cycles for a small initial defect or micro-crack to reach a critical length.
Technical Paper

A New High Pressure Droplet Vaporization Model for Diesel Engine Modeling

1995-10-01
952431
A droplet vaporization model has been developed for use in high pressure spray modeling. The model is a modification of the common Spalding vaporization model that accounts for the effects of high pressure on phase equilibrium, transport properties, and surface tension. The new model allows for a nonuniform temperature within the liquid by using a simple 2-zone model for the droplet. The effects of the different modifications are tested both for the case of a single vaporizing droplet in a quiescent environment as well as for a high pressure spray using the KIVA II code. Comparisons with vaporizing spray experiments show somewhat improved spray penetration predictions. Also, the effect of the vaporization model on diesel combustion predictions was studied by applying the models to simulate the combustion process in a heavy duty diesel engine. In this case the standard and High Pressure vaporization models were found to give similar heat release and emissions results.
Technical Paper

A New Rotating Wedge Clutch Actuation System

2017-10-08
2017-01-2441
Rotating clutches play an important role in automatic transmissions (AT), dual-clutch transmissions (DCT) and hybrid transmissions. It is very important to continually improve the transmission systems in the areas such as simplifying actuator designs, reducing cost and increasing controllability. A new concept of electrical motor driven actuation using a wedge mechanism, a wedge clutch, demonstrates potential benefits. This wedge clutch has the characteristics of good mechanical advantage, self-reinforcement, and faster and more precise controllability using electrical motor. In this paper, a new rotating wedge clutch is proposed. It presents a challenge since the motor actuator has to be stationary while the clutch piston is rotating. A new mechanism to connect the motor to the wedge piston, including dual-plane bearings and two mechanical ramp linkages, is studied. The design and verification of the physical structure of the actuator are discussed in detail in the paper.
Technical Paper

A Non-contact and Non-destructive Method to Determine Process Induced Fiber Orientation of Compression Molded SMC

2018-04-03
2018-01-1176
Understanding process induced fiber orientation distribution of composite body panels using nondestructive techniques is of prime interest. A compression molded sheet molding compound (SMC) panel is a good example of composite panels which are heavily affected by the molding process. Determination of the directionally dependent local coefficient of linear thermal expansion by digital image correlation yields information that is utilized to determine the local fiber misorientation and calculate the local SMC tensile modulus. In our current study, this methodology is utilized to determine the directional CLTE, permitting evaluation of the SMC properties in a multitude of directions not possible in destructive testing techniques. After obtaining the directionally dependent CLTE, a micromechanical approach is utilized to calculate the local SMC tensile modulus and glass fiber misorientation angle.
Technical Paper

A Numerical Study to Control Combustion Duration of Hydrogen-Fueled HCCI by Using Multi-Zone Chemical Kinetics Simulation

2001-03-05
2001-01-0250
An engine cycle simulation code with detailed chemical kinetics has been developed to study Homogeneous Charge Compression Ignition (HCCI) combustion with hydrogen as the fuel. In order to attain adequate combustion duration, resulting from the self-accelerating nature of the chemical reaction, fuel and temperature inhomogeneities have been brought to the calculation by considering the combustion chamber to have various temperature and fuel distributions. Calculations have been done under various conditions including both perfectly homogeneous and inhomogeneous cases, changing the degree of inhomogeneity. The results show that intake gas temperature is more dominant on ignition timing of HCCI than equivalence ratio and that there is a possibility to control HCCI by introducing appropriate temperature inhomogeneity to in-cylinder mixture.
Journal Article

A Study of Piston Geometry Effects on Late-Stage Combustion in a Light-Duty Optical Diesel Engine Using Combustion Image Velocimetry

2018-04-03
2018-01-0230
In light-duty direct-injection (DI) diesel engines, combustion chamber geometry influences the complex interactions between swirl and squish flows, spray-wall interactions, as well as late-cycle mixing. Because of these interactions, piston bowl geometry significantly affects fuel efficiency and emissions behavior. However, due to lack of reliable in-cylinder measurements, the mechanisms responsible for piston-induced changes in engine behavior are not well understood. Non-intrusive, in situ optical measurement techniques are necessary to provide a deeper understanding of the piston geometry effect on in-cylinder processes and to assist in the development of predictive engine simulation models. This study compares two substantially different piston bowls with geometries representative of existing technology: a conventional re-entrant bowl and a stepped-lip bowl. Both pistons are tested in a single-cylinder optical diesel engine under identical boundary conditions.
Technical Paper

A Transient Heat Transfer System for Research Engines

2007-04-16
2007-01-0975
An ongoing goal of the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin-Madison has been to expand and improve the ability of the single cylinder internal combustion research engine to represent its multi-cylinder engine counterpart. To date, the PCRL single cylinder engine test system is able to replicate both the rotational dynamics (SAE #2004-01-0305) and intake manifold dynamics (SAE #2006-01-1074) of a multi cylinder engine using a single cylinder research engine. Another area of interest is the replication of multi-cylinder engine cold start emissions data with a single-cylinder engine test system. For this replication to occur, the single-cylinder engine must experience heat transfer to the engine coolant as if it were part of a multi-cylinder engine, in addition to the other multi-cylinder engine transient effects.
Journal Article

A Transport Equation Residual Model Incorporating Refined G-Equation and Detailed Chemical Kinetics Combustion Models

2008-10-06
2008-01-2391
A transport equation residual model incorporating refined G-equation and detailed chemical kinetics combustion models has been developed and implemented in the ERC KIVA-3V release2 code for Gasoline Direct Injection (GDI) engine simulations for better predictions of flame propagation. In the transport equation residual model a fictitious species concept is introduced to account for the residual gases in the cylinder, which have a great effect on the laminar flame speed. The residual gases include CO2, H2O and N2 remaining from the previous engine cycle or introduced using EGR. This pseudo species is described by a transport equation. The transport equation residual model differentiates between CO2 and H2O from the previous engine cycle or EGR and that which is from the combustion products of the current engine cycle.
Technical Paper

A/F Ratio Visualization in a Diesel Spray

1994-03-01
940680
We have applied an imaging system to a spray in an engine-fed combustion bomb to investigate some of the features of diesel spray ignition. A high pressure electronic unit injector with main and pilot injection features was used. Our interest in this work was the local air/fuel ratio, particularly in the vicinity of the spray plumes. The measurement was made by seeding the air in the intake manifold with biacetyl. A tripled ND:YAG laser causes the biacetyl to fluoresce with a signal that is proportional to its local concentration. The biacetyl partial pressure was carefully controlled, enabling approximate estimates of the local stoichiometry in the fuel spray. Twenty-four different cases were sampled. Parameters varied include swirl ratio, fuel quantity, number of holes in the fuel nozzle and distribution of fuel quantities in the pilot and main injections. This paper presents the results of three of these cases.
Technical Paper

Advanced Engine Cooling System for a Gas-Engine Vehicle Part I: A New Coolant Flow Control During Cold Start

2024-04-09
2024-01-2414
In this paper, we present a novel algorithm designed to accurately trigger the engine coolant flow at the optimal moment, thereby safeguarding gas-engines from catastrophic failures such as engine boil. To achieve this objective, we derive models for crucial temperatures within a gas-engine, including the engine combustion wall temperature, engine coolant-out temperature, engine block temperature, and engine oil temperature. To overcome the challenge of measuring hard-to-measure signals such as engine combustion gas temperature, we propose the use of new intermediate parameters. Our approach utilizes a lumped parameter concept with a mean-value approach, enabling precise temperature prediction and rapid simulation. The proposed engine thermal model is capable of estimating temperatures under various conditions, including steady-state or transient engine performance, without the need for extra sensors.
Technical Paper

An Application of the Coherent Flamelet Model to Diesel Engine Combustion

1995-02-01
950281
A turbulent combustion model based on the coherent flamelet model was developed in this study and applied to diesel engines. The combustion was modeled in three distinct but overlapping phases: low temperature ignition kinetics using the Shell ignition model, high temperature premixed burn using a single step Arrhenius equation, and the flamelet based diffusion burn. Two criteria for transitions based on temperature, heat release rate, and the local Damköhler number were developed for the progression of combustion between each of these phases. The model was implemented into the computational computer code KIVA-II. Previous experiments on a Caterpillar model E 300, # 1Y0540 engine, a Tacom LABECO research engine, and a single cylinder version of a Cummins N14 production engine were used to validate the cylinder averaged predictions of the model.
Technical Paper

An Innovative Hybrid Powertrain for Small and Medium Boats

2018-04-03
2018-01-0373
Hybridization is a mainstream technology for automobiles, and its application is rapidly expanding in other fields. Marine propulsion is one such field that could benefit from electrification of the powertrain. In particular, for boats to sail in enclosed waterways, such as harbors, channels, lagoons, a pure electric mode would be highly desirable. The main challenge to accomplish hybridization is the additional weight of the electric components, in particular the batteries. The goal of this project is to replace a conventional 4-stroke turbocharged Diesel engine with a hybrid powertrain, without any penalty in terms of weight, overall dimensions, fuel efficiency, and pollutant emissions. This can be achieved by developing a new generation of 2-Stroke Diesel engines, and coupling them to a state-of-the art electric system. For the thermal units, two alternative designs without active valve train are considered: opposed piston and loop scavenged engines.
Technical Paper

An Investigation of Load Force and Dynamic Error Magnitude Using the Lumped Mass Connecting Rod Model

1993-03-01
930617
This paper investigates the dynamic errors between the commonly used two-lump mass connecting rod model and the actual connecting rod model for the internal combustion engine. Because of the errors between the actual rod inertia and this simplified two-lump mass model, incorrect engine dynamics and internal forces are often predicted. In this paper, the magnitudes of force differences related to errors of connecting rod inertia are presented for various engines at different engine operating speeds. A method to predict the maximum side force and its maximum deviation is presented. And the technique to minimize variability in connecting rod mass and moment of inertia, as well as minimizing errors in the lumped mass model commonly used in industry are also introduced to avoid incorrect engine dynamics and internal forces.
Technical Paper

Application of Schlieren Optical Techniques for the Measurement of Gas Temperature and Turbulent Diffusivity in a Diesel Engine

1993-03-01
930869
A new technique which is based on optoacoustic phenomena has been developed for measuring in-cylinder gas temperature and turbulent diffusivity. In the experiments, a high energy Nd:YAG pulsed laser beam was focused to cause local ionization of air at a point in the combustion chamber. This initiates a shock wave and creates a hot spot. The local temperature and turbulent diffusivity are determined by monitoring the shock propagation and the hot spot growth, respectively, with a schlieren photography system. In order to assess the validity and accuracy of the measurements, the technique was also applied to a turbulent jet. The temperature measurements were found to be accurate to within 3%. Results from the turbulent jet measurements also showed that the growth rate of the hot spot diameter can be used to estimate the turbulent diffusivity. In-cylinder gas temperature measurements were made in a motored single cylinder Caterpillar diesel engine, modified for optical access.
Technical Paper

Application of a Mechanism-Based Short Crack Growth Model for the Fatigue Analysis of an Engine Cylinder Block Including Low-Frequency Thermal and High-Frequency Dynamic Loading

2023-04-11
2023-01-0595
Cast aluminum cylinder blocks are frequently used in gasoline and diesel internal combustion engines because of their light-weight advantage. However, the disadvantage of aluminum alloys is their relatively low strength and fatigue resistance which make aluminum blocks prone to fatigue cracking. Engine blocks must withstand a combination of low-cycle fatigue (LCF) thermal loads and high-cycle fatigue (HCF) combustion and dynamic loads. Reliable computational methods are needed that allow for accurate fatigue assessment of cylinder blocks under this combined loading. In several publications, the mechanism-based thermomechanical fatigue (TMF) damage model DTMF describing the growth of short fatigue cracks has been extended to include the effect of both LCF thermal loads and superimposed HCF loadings. This approach is applied to the finite life fatigue assessment of an aluminum cylinder block. The required material properties related to LCF are determined from uniaxial LCF tests.
Technical Paper

Assessment of In-Cylinder Thermal Barrier Coatings over a Full Vehicle Drive Cycle

2021-04-06
2021-01-0456
In-cylinder thermal barrier coatings (TBCs) have the capability to reduce fuel consumption by reducing wall heat transfer and to increase exhaust enthalpy. Low thermal conductivity, low volumetric heat capacity thermal barrier coatings tend to reduce the gas-wall temperature difference, the driving potential for heat transfer from the gas to the combustion chamber surfaces. This paper presents a coupling between an analytical methodology for multi-layer coated wall surface temperature prediction with a fully calibrated production model in a commercial system-level simulation software package (GT-Power). The wall surface temperature at each time step was calculated efficiently by convolving the engine wall response function with the time-varying surface boundary condition, i. e., in-cylinder heat flux and coolant temperature. This tool allows the wall to be treated either as spatially uniform with one set of properties, or with independent head/piston/liner components.
Technical Paper

Automotive Turbocharger Rotor Optimization Using Machine Learning Technique

2022-03-29
2022-01-0216
Turbochargers are widely employed in internal combustion engines, in both, diesel and gasoline vehicle, to boost the power without any extra fuel usage. Turbocharger comes in different sizes based upon the boost pressure to increase. Capacity of turbocharger are available in great range in the market which are designed to match the requirement. From structural point of view, key component of an automotive turbocharger is rotor. This rotor consists of compressor wheel, turbine wheel, shaft and bearing (journal/ball) mainly. In industries, design & development of turbocharger rotor for its dynamic characteristics is done using virtual engineering technique (Computer Aided Engineering). Multibody dynamic (MBD) analysis simulation is one of the best approaches which is used to study the rotor in great details. In this current MBD procedure fluid-structure interaction problem is solved by modelling oil film in the journal bearing and solving it using “Reynolds equation”.
Journal Article

Benefits and Application Bandwidth of Phenolic Piston Material in Opposed Piston Calipers

2019-09-15
2019-01-2123
The use of reinforced phenolic composite material in application to hydraulic pistons for brake calipers has been well established in the industry - for sliding calipers (and certain fixed calipers with high piston length to diameter ratios). For decades, customers have enjoyed lower brake fluid temperatures, mass savings, improved corrosion resistance, and smoother brake operation (less judder). However, some persistent concerns remain about the use of phenolic materials for opposed piston calipers. The present work explores two key questions about phenolic piston application in opposed piston calipers. Firstly, do opposed piston calipers see similar benefits? Do high performance aluminum bodied calipers, where the piston may no longer be a dominant heat flow path into the fluid (due to a large amount of conduction and cooling enabled by the housing), still enjoy fluid temperature reductions?
X