Refine Your Search

Search Results

Viewing 1 to 12 of 12
Journal Article

A Study of Low-Frequency and High-Frequency Disc Brake Squeal

2016-09-18
2016-01-1944
When two identical brakes are simultaneously tested on a vehicle chassis dynamometer, very often the left hand brake is found to squeal more or less than the right hand brake, all at different frequencies. This study was performed to develop some understanding of this puzzling phenomenon. It is found that as the wear rate difference between the inner pad and the outer pad increases, low frequency (caliper and knuckle) squeals occur more and more, and as the differential wear becomes larger and larger, high frequency (disc) squeals occur less and less, finally disappearing all together. Discs and calipers are found to affect the differential pad wear, in turn affecting brake squeal generation.
Technical Paper

A Study on Improvement of Optical/Electrical Properties of Indium-Tin-Oxide Thin Films Prepared by Sol-Gel Process

2019-04-02
2019-01-0187
Ar plasma treatment was carried out to reduce the sheet resistance of indium tin oxide (ITO) thin films. To verify how the concentration of oxygen vacancies in the film increased with the Ar plasma treatment time, cumulative and continuous plasma treatments were conducted. In addition, to improve the transmittance and reduced the sheet resistance the PDMS layer was as a stamp on the surface of ITO. The oxidation of the PDMS stamp appears to be a key factor to improve the characteristics of ITO thin film. Furthermore, an indium-tin-oxide (ITO) thin film with approximately 50 nm thickness was successfully synthesized on glass substrates by using a fully aqueous sol-gel process. The annealing temperature and argon plasma treatment time appear to be key factors in reducing resistivity and increasing the transmittance of the thin film.
Technical Paper

A Study on Sensitivity of Generalized Frictional Stiffness Matrix to Reduce Squeal Noise

2007-05-15
2007-01-2171
In spite of many squeal noise studies, it is still hard to predict squeal noise these days. Squeal analysis is a useful technique in reducing or removing squeal noise. As a result, several papers that contain reasonable finite element model with correlation, squeal mode analysis, and design proposals that can reduce the squeal noise have been released. In this paper, Generalized Frictional Stiffness Matrix was extracted using Generalized Coordinate in ABAQUS. GFSM(Generalized Frictional Stiffness Matrix) is an unsymmetrical matrix which creates a real-eigen-value (unstable mode) in complex eigenvalue problem. Then, sensitivity of each term in GFSM is calculated. The least modification was proposed from the sensitivities to reduce the squeal noise. To verify this proposal, a reasonable finite element model was generated by correlating component and assembly modal tests.
Technical Paper

A Study on the Low-Weigt BMC for Headlamp Reflector

2011-10-06
2011-28-0010
Optimal Composition of Light-weight BMC (Bulk molding compound) for automotive headlamp reflector using Glass bubble was investigated. Glass bubble (G/B) normally has low heat conductivity which has a bad influence on cycle time making products like reflectors. It was very important to improve the productivity of Light-weight BMC by means of finding optimal composition of base resin, curing agent and other additives. This study focused on the ideal ratio of each component of BMC, unsaturated polyester resin, glass bubble, inorganic filler, glass fiber and additives. Mechanical and environmental properties of the product which was made of optimized light-weight BMC were evaluated to compare with the properties of the product which was made of existing BMC.
Technical Paper

Analysis of the Mechanism by Which Spline Pitch Errors Affect Powertrain Vibration

2024-06-12
2024-01-2910
As environmental concerns have taken the spotlight, electrified powertrains are rapidly being integrated into vehicles across various brands, boosting their market share. With the increasing adoption of electric vehicles, market demands are growing, and competition is intensifying. This trend has led to stricter standards for noise and vibration as well. To meet these requirements, it is necessary to not only address the inherent noise and vibration sources in electric powertrains, primarily from motors and gearboxes, but also to analyze the impact of the spline power transmission structure on system vibration and noise. Especially crucial is the consideration of manufacturing discrepancies, such as pitch errors in splines, which various studies have highlighted as contributors to noise and vibration in electric powertrains. This paper focuses on comparing and analyzing the influence of spline pitch errors on two layout configurations of motor and gearbox spline coupling structures.
Technical Paper

Correlation and Validation of Analytical Models for Vibration Fatigue Prediction of ABS Assembly Brackets

2010-04-12
2010-01-0503
ABS assembly is supported by the mounting bracket which is installed at the body inside engine room. Such feature of the mounting bracket requires consideration of durability performance under the dynamic random loads imposed by engine excitation. So, modal parameters, such as natural frequencies and mode shapes, of ABS assembly and its bracket should be considered when evaluating the fatigue life. Therefore, fatigue analyses and experiments of ABS assembly and its bracket were performed in the frequency domain rather than the time domain. After that, analysis results were compared and correlated with experimental results, and the analysis method was updated to improve analysis accuracy.
Technical Paper

Disc Brake Squeal vs. Disc Pad Compressibility-Caliper Stiffness Interactions: Low-Frequency Squeal and High-Frequency Squeal vs. Differential Pad Wear

2017-09-17
2017-01-2528
It is widely believed or speculated that higher pad compressibility leads to reduced brake squeal and that caliper design can affect brake squeal. After encountering anecdotal contradictory cases, this investigation was undertaken to systematically generate basic data and clarify the beliefs or speculations. In order to adjust pad compressibility, it is common to modify pad molding temperatures, pressures and times, which in addition to changing the compressibility, changes friction coefficient and physical properties of the pad at the same time. In order to separate these two effects, NAO disc pads were prepared under the same molding conditions while using different thicknesses of the underlayer to achieve different compressibilities, thus changing the compressibility only without changing the friction coefficient and physical properties of the pad.
Technical Paper

High Frequency Brake Squeal Prediction Index for Disc In-plane Mode

2009-05-19
2009-01-2102
As well as performance and safety, sensibility factor such as brake squeal noise has become an important factor to consider in today’s automotive industry. However, regardless of its importance, reduction of brake squeal noise has remained as one of the biggest challenges that have not yet been solved. Recently, many studies are being conducted to reduce squeal noise with the development of numerical analysis using FEM(Finite Element Method). This paper deals with complex eigenvalue analysis with commercial software program ABAQUS to resolve the squeal noise related to disc in-plane mode which is reported to occur frequently in the squeal noise frequency band 1~20kHz. As the reliability of the FE model is the most critical factor in numerical analysis, the FE model is first correlated with FRF modal test of each brake part and measurement of material property of pad with the anisotropic character through ultrasonic methods.
Technical Paper

Reducing Brake Squeal through FEM Approach and Parts Design Modifications

2006-10-08
2006-01-3206
Nowadays, brake squeal noise is one of the most difficult problems and is a big issue in the automobile industry. Finite element analysis is a useful tool in predicting the noise occurrence of a conventional brake system during the design stage. This paper explains the technical procedure and method to resolve the squeal noise with commercial software programs. Friction coefficient under the operating conditions of the brake system was considered as a variable with respect to disc velocity and there was a dynamic behavior within the pad assembly during brake action. First of all, our Finite Element (FE) model was verified using the results of the parts and assembly's FRF measurements and an inertia noise dynamometer, followed by complex eingen value analysis to detect unstable frequencies. Subsequently, mode analysis was conducted for each part of the brake system through the MAC values.
Technical Paper

Research on the Development of the Bio Composites for Automotive Interior Parts

2011-10-06
2011-28-0006
Since the environmental problems and new stricter regulations are forcing the industries to introduce more ecological materials for their products, biodegradable materials have attracted increasing attention. Among these materials, Polylactic acid (PLA) is remarkable for its modulus, strength, chemical resistance. However, PLA could not be used for automobile industries for its low heat resistance and impact strength. Therefore, in this study natural fiber was introduced as reinforcements in order to improve the properties of PLA. And for various experiments, Polypropylene (PP) was used as matrix resin instead of PLA. Especially for improving the properties of PLA composites, surface treatments, annealing, and adding rubber elements were performed. With surface treatments, we found that the mechanical properties of composite were improved. And with annealing treatment, we found the remarkable increase of heat resistance of PLA composite.
Journal Article

Study on the Vehicle Cabin Noise Employing the Interfacial Friction in Double Layered Frames Used in Electric Vehicle Traction Motors

2013-10-14
2013-01-2590
Electric vehicles are considered not only eco-friendly but also quieter than vehicles with conventional internal combustion engines. However, less noisy environments in cabins make passengers feel uncomfortable to moderate noise. This paper discusses noise reduction for electric vehicles radiated from traction motors. In the analysis of the noise generation mechanisms it is demonstrated that frequency ranges of the highest level in the noise spectrum of electromagnetic harmonic orders of the induction motor coincide with structural resonances of the motor housing. Interfacial friction between the inner and outer housings of the motor is employed in reducing structural vibration of the motor. Measured noise in the cabin and vibration at the motor housing indicates that slip damping presented from interfacial friction between the inner and outer housing is effective in reducing noise from the traction motor and in the cabin.
Technical Paper

The Factors Governing Corrosion Stiction of Brake Friction Materials to a Gray Cast Iron Disc

2018-10-05
2018-01-1899
Corrosion stiction at the contact interface between a brake friction material and a gray iron disc under the parking brake condition was investigated by evaluating the possible parameters that affect the shear force to detach the corroded interface. Using production brake friction materials, comprising non-steel and low-steel types, corrosion tests were carried out by pressing the brake pad onto the gray iron disc using a clamp at various conditions. Results showed that the shear force to detach the corroded interface tended to increase with applied pressure and corrosion time. On the other hand, porosity, acidity, and hydrophobicity of the friction material did not show a reliable correlation to the stiction force. The poor correlation of the stiction force with the friction material properties indicated that the stiction force was not determined by a single factor but governed by multiple parameters including surface contact areas and inhomogeneity of the ingredients.
X