Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2-Door Vehicle Body Local Force Evaluation with the IIHS, EuroNCAP, and LINCAP Side Impact Barriers

2004-03-08
2004-01-0333
Structure enhancement based on data monitored in a traditional side impact evaluation is primarily a trial and error exercise resulting in a large number of computer runs. This is because how the structure gets loaded and the degree of contribution of local structural components to resist the impact while absorbing energy during a side collision is not completely known. Developing real time complete load profiles on a body side during the time span of an impact is not an easy task and these loads cannot be calculated from that calculated at the barrier mounting plate. This paper highlights the load distribution, calculated by a procedure using computer aided engineering (CAE) tools, on a typical 2-door vehicle body side when struck by moving deformable barriers used in the insurance institute for highway safety (IIHS), EuroNCAP and LINCAP side impact evaluations.
Technical Paper

2005 Ford GT - Vehicle Aerodynamics - Updating a Legend

2004-03-08
2004-01-1254
This paper documents the processes and methods used by the Ford GT team to meet aerodynamic targets. Methods included Computational Fluid Dynamics (CFD) analysis, wind tunnel experiments (both full-size and scale model), and on-road experiments and measurements. The goal of the team was to enhance both the high-speed stability and track performance of the GT. As a result of the development process, significant front and rear downforce was achieved while meeting the overall drag target.
Journal Article

3D CFD Simulation of Hydraulic Test of an Engine Coolant System

2022-03-29
2022-01-0207
Designing an efficient vehicle coolant system depends on meeting target coolant flow rate to different components with minimum energy consumption by coolant pump. The flow resistance across different components and hoses dictates the flow supplied to that branch which can affect the effectiveness of the coolant system. Hydraulic tests are conducted to understand the system design for component flow delivery and pressure drops and assess necessary changes to better distribute the coolant flow from the pump. The current study highlights the ability of a complete 3D Computational Fluid Dynamics (CFD) simulation to effectively mimic a hydraulic test. The coolant circuit modeled in this simulation consists of an engine water-jacket, a thermostat valve, bypass valve, a coolant pump, a radiator, and flow path to certain auxiliary components like turbo charger, rear transmission oil cooler etc.
Technical Paper

A Bayesian Estimate of Vehicle Safety Performance

2005-04-11
2005-01-0822
This paper describes the development of a Bayesian estimate of vehicle safety performance. The vehicle crash testing is conducted often using a very small sample size. With these limited tests, one often has to face the following question, “what is the confidence to meet the design target or government compliance in a subsequent test?” The prediction methods will be discussed to determine the confidence in meeting overall the design requirements based on successful test results with multiple responses and design targets.
Technical Paper

A CAE Methodology to Simulate Testing a Rearward Facing Infant Seat during FMVSS 208 Low Risk Deployment

2007-04-16
2007-01-1770
The Federal Motor Vehicle Safety Standard or FMVSS 208 requires passenger cars, multi-purpose vehicles, trucks with less than unloaded vehicle weight of 2,495 kg either to have an automatic suppression feature or to pass the injury criteria specified under low risk deployment test requirement for a 1 year old dummy in rearward and forward facing restraints as well as a forward facing 3 and 6 year old dummy. A convertible child seat was installed in a sub-system test buck representing a passenger car environment with a one-year- old dummy in it at the passenger side seat and a passenger side airbag was deployed toward the convertible child seat. A MADYMO model was built to represent the test scenario and the model was correlated and validated to the results from the experiment.
Technical Paper

A CFD Validation Study for Automotive Aerodynamics

2000-03-06
2000-01-0129
A study was conducted using Ford's nine standard CFD calibration models as described in SAE paper 940323. The models are identical from the B-pillar forward but have different back end configurations. These models were created for the purpose of evaluating the effect of back end geometry variations on aerodynamic lift and drag. Detailed experimental data is available for each model in the form of surface pressure data, surface flow visualization, and wake flow field measurements in addition to aerodynamic lift and drag values. This data is extremely useful in analyzing the accuracy of the numerical simulations. The objective of this study was to determine the capability of a digital physics based commercial CFD code, PowerFLOW ® to accurately simulate the physics of the flow field around the car-like benchmark shapes.
Technical Paper

A Comparison of DES Methods for the DrivAer Generic Realistic Car Model on a Wall Resolved and a Wall Function Mesh

2022-03-29
2022-01-0900
The DrivAer realistic generic car model is now established as one of the benchmark geometries to assess the aerodynamic flow field characteristics associated with passenger vehicles. Since its introduction in 2012, the database of experimental studies has grown and provides excellent validation opportunities for analytical methods. This paper compares Computational Fluid Dynamics (CFD) simulations for integral forces, surface pressure distribution and velocity flow fields for the DrivAer model in the notchback configuration. Transient CFD data are obtained by employing hybrid Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation methods (Detached Eddy Simulation - DES) using the finite volume solvers Simcenter Star-CCM+ and the openFOAM based flow solver IconCFD. Computational results are calculated using Wall Resolved Meshes (WRM), where y+ < 1, and Wall Function Meshes (WFM), where 30 < y+ < 100.
Journal Article

A Comparison of the Mid-Size Male THOR and Hybrid III ATDs in Vehicle Frontal Crash Tests

2023-06-27
2022-22-0005
In order to evaluate the THOR-50M as a front impact Anthropomorphic Test Device (ATD) for vehicle safety design, the ATD was compared to the H3-50M in matching vehicle crash tests for 20 unique vehicle models from 2 vehicle manufacturers. For the belted driver condition, a total of fifty-four crash tests were investigated in the 56.3 km/h (35 mph) front rigid barrier impact condition. Four more tests were compared for the unbelted driver and right front passenger at 40.2 km/h (25 mph) in the flat frontal and 30-degree right oblique rigid barrier impact conditions. The two ATDs were also evaluated for their ability to predict injury risk by comparing their fleet average injury risk to Crash Investigation Sampling System (CISS) accident data for similar conditions. The differences in seating position and their effect on ATD responses were also investigated.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Constitutive Model for Polyurethane Foams with Strain-Rate and Temperature Effects

1998-02-23
980967
This paper describes the testing and constitutive model development of polyurethane foams for characterization of their material dynamic properties. These properties are needed not only for understanding their behavior, but also for supplying essential input data to foam models, which help provide design directions through simulations of foam selection for cushioning occupant head impacts against the vehicle door and upper interior. Polyurethane foams of varying densities were tested statically and dynamically under uniaxial compressive impact loading at constant velocities of various rates and different temperatures. The test results were utilized for developing a constitutive model of polyurethane foams by taking the density, strain rate and temperature effects into consideration. Uniaxial constitutive models are developed in two ways.
Technical Paper

A Detailed Aerodynamics Investigation of Three Variants of the Generic Truck Utility

2021-04-06
2021-01-0950
Three pickup truck variants of the Generic Truck Utility (GTU) are evaluated and compared using wind tunnel test data and computational fluid dynamics (CFD) simulations. The configurations analyzed are the short cab/long box, medium cab/medium box, and long cab/short box geometries, which all share a common vehicle length and wheelbase. Both cab and box length are known to influence the total bluff body drag through the interaction of the cab wake in the pickup box with the total vehicle wake, and the GTU provides an excellent test box to investigate the details of these interactions. Experimental testing was conducted at the WindShear wind tunnel on a full-scale GTU model, while transient CFD simulations were carried out with IconCFD®, an open-source based solver. Experimental and CFD results are used to describe the general flow field around the vehicle, and a comparison is made with the wind tunnel integral force data as well as centerline pressure tap data.
Technical Paper

A Development of Active Vent Airbag for the Passenger New NCAP

2015-03-10
2015-01-0024
For the robust passenger NCAP(New Car Assessment Program) 5star and the stable neck injury performance, a new concept of passenger airbag has been required. Especially, the deployment stability and the vent hole control technology of the passenger airbag can be improved. According to these requirements, the deployment stability technique has been studied and the ‘Active Vent’ technology has been developed. As a result, these technologies have led to achieve the robust NCAP rating and are applied to the production vehicles.
Technical Paper

A Development of the New Mechanism for Preventing Door Opening in Side Impact Test

2017-03-28
2017-01-1459
During a new vehicle development process, there are several requirements for side impact test that should be confirmed. One of the requirements is the prevention of door opening during side impact test. Even though there are many causes for door opening problem, this study deals with inertia effect by impact energy. Until now, there have been two classical methods to prevent car door from opening in side impact. One is the increment of the inertia resistance by increasing the mass of the balance weight and the spring force. The other is the application of the blocking lever. Unfortunately, in spite of our efforts, the door opening problem occurs occasionally. Therefore, to improve the problem fundamentally, this paper proposes a new blocking lever mechanism that work similar to ball-point pen structure. The proposed mechanism fixes the blocking lever when the opening directional inertia force is applied to the door outside handle during side crash.
Technical Paper

A Dynamic Component Rollover Crash Test System

2006-04-03
2006-01-0721
Full vehicle dynamic crash tests are commonly used in the development of rollover detection sensors, algorithms and occupant protection systems. However, many published studies have utilized component level rollover test fixtures for rollover related occupant kinematics studies and restraint system evaluation and development. A majority of these fixtures attempted to replicate only the rotational motion that occurs during the free flight phase of a typical full vehicle rollover crash test. In this paper, a description of the methods used to design a new dynamic component rollover test device is presented. A brief summary of several existing rollover component test methods is included. The new system described in this paper is capable of replicating the transfer of lateral energy into rotational vehicle motion that is present in many tripped laboratory based rollover crash tests.
Technical Paper

A Flexible Multi-Body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

2007-04-16
2007-01-0852
This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of 1∼2mm/sec and frequency of 132mm. First, the simulation is conducted with the same condition as the test.
Journal Article

A Frontal Impact Taxonomy for USA Field Data

2008-04-14
2008-01-0526
An eight-group taxonomy was created to classify real-world frontal crashes from the Crashworthiness Data System (CDS) component of the National Automotive Sampling System (NASS). Three steps were taken to develop the taxonomy: (1) frontal-impact towaway crashes were identified by examining 1985-2005 model year light passenger vehicles with Collision Deformation Classification (CDC) data from the 1995-2005 calendar years of NASS; (2) case reviews, engineering judgments, and categorization assessments were conducted on these data to produce the eight-group taxonomy; and (3) two subsets of the NASS dataset were analyzed to assess the consistency of the resulting taxonomic-group frequencies. “Full-engagement” and “Offset” crashes were the most frequent crash types, each contributing approximately 33% to the total. The group identified as “D, Y, Z No-Rail” was the most over-represented crash type for vehicles with at least one seriously-injured occupant.
Technical Paper

A General Failure Criterion for Spot Welds with Consideration of Plastic Anisotropy and Separation Speed

2003-03-03
2003-01-0611
A general failure criterion for spot welds is proposed with consideration of the plastic anisotropy and the separation speed for crash applications. A lower bound limit load analysis is conducted to account for the failure loads of spot welds under combinations of three forces and three moments. Based on the limit load solution and the experimental results, an engineering failure criterion is proposed with correction factors determined by different spot weld tests. The engineering failure criterion can be used to characterize the failure loads of spot welds with consideration of the effects of the plastic anisotropy, separation speed, sheet thickness, nugget radius and combinations of loads. Spot weld failure loads under uniaxial and biaxial opening loads and those under combined shear and twisting loads from experiments are shown to be characterized well by the engineering failure criterion.
Technical Paper

A Mechanical Energy Control Volume Approach Applied to CFD Simulations of Road Vehicles

2024-04-09
2024-01-2524
This paper presents a mechanical energy control volume analysis for incompressible flow around road vehicles using results from Detached Eddy Simulation Computational Fluid Dynamics calculations. The control volume approach equates the rate of work done by surface forces of the vehicle to (i) the rate of work and kinetic energy flux at the control volume boundaries (particularly in the vehicle wake) and (ii) the rate of energy loss in the domain. At the downstream control volume boundary, the wake terms can be divided into lift-induced and profile drag terms. The rate of energy loss in the domain can be used as a volumetric analog for drag (drag counts/m3, when normalized). This allows for a quantitative break down of the contributions of different flow features/regions to the overall drag force.
Technical Paper

A Multi-Objective Optimization and Robustness Assessment Framework for Passenger Airbag Shape Design

2007-04-16
2007-01-1505
A passenger airbag is an important part of a vehicle restraint system which provides supplemental protection to an occupant in a crash event. New Federal Motor Vehicle Safety Standards No. 208 requires considering multiple crash scenarios at different speeds with various sizes of occupants both belted and unbelted. The increased complexity of the new requirements makes the selection of an optimal airbag shape a new challenge. The aim of this research is to present an automated optimization framework to facilitate the airbag shape design process by integrating advanced tools and technologies, including system integration, numerical optimization, robust assessment, and occupant simulation. A real-world frontal impact application is used to demonstrate the methodology.
X