Refine Your Search

Topic

Search Results

Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

2015-06-15
2015-01-2257
Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Technical Paper

An Experimental Comparison Between Air-Assisted Injection System and High Pressure Injection System at 2-Stroke Engine

1995-02-01
950270
This study presents engine test results of HMC's piston-ported 2-stroke gasoline engine. This single cylinder engine of 400cc displacement has featured in direct injection(DI) of fuel and external blower scavenging of air. Two different concepts of DI system were adopted, one is high pressure fuel injection(HPFI) system for solid fuel only and the other is low pressure air-assisted fuel injection(AAFI) system. Two kinds of engines with different scavenging intake port shapes and areas were tested to find the effect of scavenging port type on engine performance. Also tested were trends of BSFC, BSHC and BSCO versus fuel injection timing and engine speed with HPFI and AAFI, respectively. Power and boost pressure at full load and BSFC and BSHC at part load were tested.
Technical Paper

Bio-Based Composites and Their Applications for Auto Interior Parts

2016-04-05
2016-01-0512
Polylactide (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and sugar beets, has attracted much attention for automotive parts application. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the PLA composites including stereocomplexed with L- and D-PLA, we developed the unit processes such as fermentation, separation, lactide conversion, and polymerization. We investigated D-lactic acid fermentation with a view to obtaining the strains capable of producing D-lactic acid, and through catalyst screening test for polycondensation and depolymerization reactions, we got a new method which shortens the whole reaction time of lactide synthesis step. Poly(d-lactide) is obtained from the ring-opening polymerization of d-lactide. Also we investigated several catalysts and polymerization conditions.
Technical Paper

Body Optimization for Front Loading Design Process

2014-04-01
2014-01-0388
An innovative design process is proposed to be applicable in the early conceptual design phase as a means of front loading design. The objective of the study is to minimize trial and errors in the detailed design phase and to shorten the overall design period. The process includes design optimization which is based on efficient modeling techniques. An integrated CAD/CAE modeling method and a simplified quality FE model are key factors in the course of effectuation. The conceptual modeling takes into account the adaptability of computer-generated models with the use of CAD/CAE integrated design environment. To achieve maximum efficiency in the repeated computations in optimization, an FE modeling approach is introduced in terms of simplicity and quality. The proposed FE modeling employs beam and spring elements to construct vehicle body models, which is targeted to produce an instant analysis result with a robust conceptual design at the incipient phase of development.
Technical Paper

Convolution of Engineering Methods (TRIZ, FMEA, Robust Engineering) to Creatively Develop New Technologies

2014-04-01
2014-01-0780
Many high risks of failure in developing and applying new technologies exist in the recent automotive industry because of big volume of selling cars in a global market. Several recalls cost companies more than $ 100 million per problem. New technologies always have uncertainty in performing intended functions at various given conditions despite the fact that engineers do their best to develop technologies to meet all the requirements. Uncertainty of new technologies put companies into danger of failing in their business. Therefore, many companies tend to take interest in reducing risks from the uncertainty in technologies, but the increasing complexity of modern automotive technologies make it difficult to develop complete technologies. A new engineering methodology called SPEED Engineering was introduced to reduce the risks of new technology applications and to facilitate engineers to conceive innovative ideas dominating the market in the future.
Technical Paper

Development of Nu 2.0L CVVL Engine

2014-04-01
2014-01-1635
Hyundai Motor Group launched a Continuously Variable Valve Lift (CVVL) engine in 2012. The engine is equipped with HMG's unique CVVL mechanism and is characterized by low fuel consumption, high performance and its responsiveness. The CVVL mechanism is based on a six-linkage mechanism and has advantages of compactness and durability. The engine is a 4 cylinder In-Line, 2.0L gasoline engine and is designed for a mid-sized passenger car. The engine increases fuel efficiency by 7.7% and the peak engine power by 4.2%. One of the most challenging issues in producing a CVVL engine is the valve lift deviations throughout the engine cylinders. The valve cap shim and set screw were designed to adjust the valve lift deviations. Cap shim thickness is chosen by measuring the valve top height, and shoe lift of the cam carrier assembly. The set screw is an auxiliary device to adjust the valve lift deviation.
Technical Paper

Development of primerless paintable thermoplastic polyolefin with high impact strength for vehicle interior parts

2000-06-12
2000-05-0151
A new thermoplastic polyolefin with primerless adhesion to paint has been developed by polypropylene (PP) with α-olefin copolymers, mineral fillers and some additives. It can substantially reduce costs and environmental problems by eliminating primer treating operations, traditionally treated from trichloroethene (TCE). This new material exhibits unique solid-state texture that rubbery polymer component are typically dispersed in lamellar structure matrix. Versus conventional PP or thermoplastic olefin (TPO), it provides excellent brittle-ductile (BD) transition as well as paintability. Also it is expected to have a significant impact on interior parts as requirements for material change to an emphasis on light weight, lower cost, more efficient finishing.
Technical Paper

Development of the Overmolding Instrument Panel

2013-03-25
2013-01-0018
We developed the hard IP (Instrument Panel) that is integrally over molded with a soft layer (TPO, Thermo Plastic Olefin) for the soft feeling and cost reduction. And also we produced the cost-effective PAB(Passenger-side Airbag) door system that had an in-mold tearseam and avoided competitors' patents simultaneously. The development procedure of this technology is; ① Material for overmolding ② Design optimization ③ Solving tool challenges. The reduction of process through integrally molding with soft material helped to accomplish a soft feeling on the IP and cost reduction at the same time. The deployment, head impact and heat aging tests were conducted and 5 patents were applied such as the optimization of the mold structure and injection condition.
Technical Paper

Ethanol Flex Fuel system with Delphi Heated injector application

2014-04-01
2014-01-1369
After the second worldwide oil crisis, Brazil put in place by 1975 a strategic plan to stimulate the usage of ethanol (from sugar cane), to be mixed to the gasoline or to be sold as 100% ethanol fuel (known as E100). To enable an engine to operate with both gasoline and ethanol (and their mixtures), by 2003 the “Flex Fuel” technology was implemented. By 2012 calendar year, from a total of about 3.8 million vehicles sold in the Brazilian market, 91% offered the “Flex Fuel” technology, and great majority used a gasoline sub-tank to assist on cold starts (typically below 15°C, where more than 85% of ethanol is present in fuel tank). The gasoline sub-tank system suffers from issues such as gasoline deterioration, crash-worthiness and user inconvenience such as bad drivability during engine warm up phase. This paper presents fuel injector technologies capable of rapidly electrically heating the ethanol fuel for the Brazilian transportation market.
Technical Paper

Evaluation of Time-Resolved Nano-Particle and THC Emissions of Wall-Guided GDI Engine

2011-10-06
2011-28-0022
A nano-sized PM and THC emission characteristics were investigated according to the fuel injection strategy such as a pressure and timing in the GDI engine. On the part-load condition, the particulate emissions exhibited a strong sensitivity to the injection timing. The fuel injection pressure also had a great association with the nano-particles and THC. A size of PM exhausted from the GDI engine located near 10nm on the part-load. In contrast, accumulation mode particles within 60 - 80nm mainly exhausted during the cold transient start phase. Increment of fuel injection pressure positively affected on the nano-particle and THC emissions during the start of the engine, as well.
Technical Paper

Fatigue Failure and Reinforcing Method of Spot Welded Area at the Stage of Vehicle Development

1996-02-01
960553
Vehicle body structures are formed by thousands of spot welds, and fatigue failure of vehicle structures occur near the spot welds after driving a long way at a durability test road. It is necessary to know accurately the reason of the fatigue failure of the spot weld in the developing stage in order to reinforce it. Many investigations have been done regarding the strength of spot welded joints, contributing to understand its fatigue strength. In the developing process, a fatigue failed spot welded area can be repaired by CO2 welding or another method to continue the test. To know the effect of reinforcing these welds, several methods of welding were analyzed and compared to spot welding. With the results of this test, the appropriate repair method can be used instead of spot welding during the development of a new car and the best design guide can be given for the strength.
Technical Paper

Improvement of Manufacturing and Evaluation Technology for the Light Weight Brake Disc Composed of Hybrid Type Material

2014-04-01
2014-01-1009
Reducing unsprung mass of the car is a representative method to enhance the ride & handling performance and fuel efficiency. In this study, brake disc weight is reduced 15∼20% using a hybrid type material. The basis for this study is the separation of the friction surface and HAT(mounting part). Aluminum material is applied in the HAT for a light weight effect. Gray iron is applied in the friction surface section to maintain braking performance. Two types of joining between aluminum and cast iron are developed. One is the aluminum casting method utilizing a gray iron insert and the other is a bolted assembly method. Detailed structure, process and material are optimized using try-out & dynamometer experiments. The Reliability of this development is proved through durability (dynamometer and vehicle) testing.
Technical Paper

Invisible PAB Door Development Using Two-shot Molding

2010-04-12
2010-01-0684
Invisible Passenger-side Airbag (IPAB) door system must be designed with a weakened area such that the airbag will break through the Instrument Panel (IP) in the intended manner, with no flying debris at any temperature. At the same time, there must be no cracking or sharp edges at the head impact test (ECE 21.01). Needless to say, Head impact test must keep pace with the deployment test. In this paper, we suggested soft airbag door system that is integrally molded with a hard instrument panel by using Two-shot molding. First of all, we set up the design parameters of IPAB door for the optimal deployment and head impact performance by CAE analysis. And then we optimized the open-close time at each gate of the mold so that the soft and hard material could be integrally molded with the intended boundary. We could make the boundary of two materials more constant by controlling the open-close time of each gate with resin temperature sensor.
Technical Paper

Low-pressure molding compound hood panel for a passenger car

2000-06-12
2000-05-0110
Low-pressure molding compound (LPMC) is a new kind of composite material which can be used for automotive body panels. LPMC has similar mechanical properties compared to conventional sheet molding compound (SMC) but excellent moldability due to the different thickening system. In this paper, we prepared LPMC hood prototype for a passenger car using a low-cost tooling. Inner panel and outer panel were made of general-density- and low-density-grade LPMC, respectively, in order to maximize weight reduction maintaining surface quality. Physical properties containing tensile strength, flexural modulus, notched Izod impact strength of those samples were investigated. In addition, CAE simulation was also done for strength analysis of the hood assembly.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Performance and Exhaust Emissions of Hyundai Flexible Fuel Vehicle (FFV)

1993-11-01
931986
Recently, flexible fuel vehicle (FFV) has been drawn great attention because of its response for immediate use as alternative fueled one. Hyundai FFV can be operated on arbitrary fuel mixtures between gasoline and M85 with the specially programmed electronic control unit (ECU) which can determine optimized fueling quantity and ignition timing as the methanol content by the signal from electrostatic type fuel sensor. In this paper, the results of various tests including engine performance, cold startability, durability and exhaust emission reduction have been described. Full load, cold mode durability tests and field trials have been carried out with some material changes and surface treatments in the lubricating parts and fuel system. But, more work on its durability improvement is still required.
Technical Paper

Recycling of Automotive Tail Lamp Assembly

1997-02-24
970417
A new recycled material has been developed by using the scrap of tail lamp assembly, made of poly(methyl methacrylate) (PMMA) for the lens and acrylonitrile-butadiene-styrene terpolymer (ABS) for the housing. Lamp scrap was extruded in a twin-screw extruder, and mechanical properties of the scrap were compared with ABS, PMMA, and an ABS/PMMA (60/40) blend. The recycled material from 100% tail lamp scrap has similar modulus to the 60/40 blend, however, notched Izod impact strength and thermal resistance were lower than that of the blend, probably due to the presence of hot melt adhesive and silver paint. Scrap/virgin polymer mixtures showed improved thermal resistance and impact strength. The effects of composition and type of mixed polymer on mechanical properties were also investigated.
Technical Paper

Research and Development of Hyundai Flexible Fuel Vehicles (FFVs)

1993-03-01
930330
This paper describes Hyundai's research and development work on a flexible fuel vehicle (FFV). The work on FFV has been conducted to evaluate its potential as an alternative to the conventional gasoline vehicle. Hyundai FFV described here can operate on M85, gasoline, or any of their combinations, in which the methanol concentration is measured by an electrostatic type fuel sensor. For that operation, a special FFV ECU has been developed and incorporated in the FFV. The characteristics affecting FFV operation, such as FFV ECU control strategy and injector flow rate, have been investigated and optimized by experiment. Various development tests have been performed in view of engine performance, durability, cold startability, and exhaust emissions reduction. The exhaust gas aftertreatment system being consisted of manifold type catalytic converter(MCC) and secondary air injection system has shown good emission reduction performance including formaldehyde emission.
Technical Paper

Selecting the Spot Welding Condition of Multi-Layer Vehicle Structure

1997-02-24
970083
An automobile's structure is generally connected by spot welding the sheets together. Sometimes more than three layers of sheets can be used in a certain location for spot welding due to the limits of design conditions. Static strength and the fatigue life characteristics can be changed according to the welding conditions, which depend on the material, the thickness, and the number of sheets. Setting the appropriate conditions of multi-layer spot welding can be determined by analyzing static strength and fatigue life. For converting multi-layer spot welding to that of twofold layer with equal strength, the converting method can be suggested from static and fatigue test results. The increasing rate of static strength is larger than that of fatigue life, so it is reasonable to use fatigue life for limit condition.
Technical Paper

Study of Gasoline Combustion Process By High Speed In- Cylinder Gas Sampling

1989-11-01
891259
An experiment has been carried out to investigate the combustion process in an operating S.I. engine (MPI and Multi- valve), using in-cylinder high speed gas sampling techniques. Measurements have been made of local air fuel ratios and time-resolved concentrations of combustion gases such as CO, CO2, THC, NOx, and O2, particularly focused on spark plug location. The effects of fuel injection timing, swirl generating air motion, sampling location, spark timing, speed and load have been considered. With the end of fuel injection at 120° ATDC on the intake stroke, A/F ratio at spark plug location has the leanest value for standard inlet port, while it has the richest value for swirl generating inlet port. The initial NOx concentration in the unburned gas region, diluted by the residual gases, has been substantially reduced between 5° BTDC and 15° ATDC crank angle prior to combustion.
X