Refine Your Search

Topic

Author

Search Results

Technical Paper

A Case Study: Application of Analytical and Numerical Techniques to Squeak and Rattle Analysis of a Door Assembly

2015-06-15
2015-01-2257
Squeak and rattle (S&R) problems in body structure and trim parts have become serious issues for automakers because of their influence on the initial quality perception of consumers. In this study, various CAE and experimental methods developed by Hyundai Motors for squeak and rattle analysis of door systems are reported. Friction-induced vibration and noise generation mechanisms of a door system are studied by an intelligent combination of experimental and numerical methods. It is shown that the effect of degradation of plastics used in door trims can be estimated by a numerical model using the properties obtained experimentally. Effects of changes in material properties such as Young's modulus and loss factor due to the material degradation as well as statistical variations are predicted for several door system configurations. As a new concept, the rattle and squeak index is proposed, which can be used to guide the design.
Technical Paper

A Development of Urea Solution Injection Quantity Decision Logic for SCR System

2013-04-08
2013-01-1069
In this project, phenomena in a SCR catalyst, such as heat transfer and catalytic reactions, are modeled numerically. The model is simplified to be integrated on an electronic control unit. The calibration process for this model has been developed, which is performed on gas bench and validated on a vehicle equipped with a Urea-SCR system and a Rapid Prototype Control Unit. With this simplified SCR reaction model, it is possible to estimate NH3 consumption and properly control the urea injection quantity with less calibration efforts.
Technical Paper

A Method of the Improvement of Wireless Power Transfer (WPT) System Efficiency, Compatibility, EMI Reduction, and Foreign Object Detection (FOD) for EV Applications

2020-04-14
2020-01-0530
During the charging Electric Vehicle (EV), power transfer occurs in the power electronics of an EV powertrain. Understanding how the Wireless Power Transfer (WPT) occurs would be beneficial for achieving convenient charging method. This paper focuses on improving WPT system pad compatibility, power transfer efficiency, EMI reduction, and Foreign Object Detection (FOD). The choice of convertible WPT pad for circular and DD type coil, improvement of pad compatibility is analyzed in this paper. In addition, several control methods of increasing WPT system efficiency are proposed. Firstly, the effect of Full Bridge - Half Bridge (FB-HB) is introduced, and the influence of a Bridgeless control scheme is discussed. A new, ferrite pad structure is applied to WPT system in order to achieve EMI reduction. Lastly, a new strategy of Foreign Object Detection (FOD) is suggested for WPT system using phase difference and frequency variation detection.
Technical Paper

A Novel Vehicle-to-Vehicle Fast Charging Control System Utilizing Motor and Inverter in EV

2022-03-29
2022-01-0170
As electric vehicles become more widespread, such vehicles may be subject to “range anxiety” due to the risk of discharging during driving or the discharging when left unused for a long period. Accordingly, a vehicle equipped with a mobile charger that can provide a charge in an emergency. The vehicle with the mobile charger is usually composed of a large capacity battery, a power converter in a small truck. However, the large capacity battery and the power converter are disadvantageous in that they are large in size and expensive and should be produced as a special vehicle. In this paper, we propose a method to solve the problem using an internal EV system without requiring an additional power generation, battery and a charging-and-discharging device. The method is a novel Vehicle-to-Vehicle (V2V) fast charging control system utilizing motor and inverter in EV.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Technical Paper

A Sensor Fusion Digital-Map System for Driver Assistance

2013-04-08
2013-01-0734
A traffic situation is getting more complex in urban areas. Various safety systems of an automobile have been developed but fatal and serious accidents still can be made by driver's faults or distractions. The system supporting extend of driver's recognition area is going to be an important part of future intelligent vehicles in order to prevent accidents. In this paper we propose sensor fusion system based on a digital-map for driver assistance. The accurate localization of a host vehicle is achieved by a stereo vision sensor and a digital-map using polygon matching algorithm in urban area. A single-row laser scanner is used for tracking multiple moving objects. The coordinate transformation from sensor frame to global frame is performed to visualize the moving objects on a digital-map. An experiment was conducted in an urban canyon where the GPS signals are frequently interrupted.
Technical Paper

A Study of the Disc Scoring Generation Principle and Reduction (II)

2018-10-05
2018-01-1891
In the latest paper [10], we presented our work based on experiments studying MPU (Metal Pick Up) of the pad and scoring(scratching) of the disc. The main component of MPU was iron “Fe”. If the roughness of the disc was small, the content of iron “Fe” was increased and the segregation of that was decreased especially in initial condition. In this study, we extended our study based on the results by adding some additional factors such as the location of the roughness of the disc, the coefficients brake pad friction, and disc slots. We made various discs of different roughness boundaries and slots, and pads of pad friction coefficients; and conducted two types of tests for whether a slot is present or not with the other same conditions to confirm the impact of the scoring. We find and believe that our experimental data should serve a useful guideline for reducing MPU of the pad and scoring of the disc.
Technical Paper

A Study on Control Logic Design for Power Seat

2019-04-02
2019-01-0466
The large luxury sedan seat has a 22-way Movement. It offers a wide range of adjustments to enhance passenger comfort performance while it has many constraints on movement in constrained indoor space. In addition, the power seat is operated by a motor, which makes it difficult for the user to determine the amount of adjustment, unlike determining the amount of adjustment by the power and feel of a person, such as manual seat adjustment. IMS, one-touch mode, is also constrained by parameters such as indoor space package, user's lifestyle, etc. during function playback. This paper aims to design the seat control logic to achieve the best seat comfort while satisfying each constraint. The results of this study are as follows. Increase robustness of power seat control logic. Provide optimal adjustments and comfort at each location. Offer differentiated custom control and seating modes for each seat. Improve customer satisfaction and quality by upgrading software.
Technical Paper

A Study on an Integrated System to Measure and Analyze Customer Vehicle Usage Monitoring through a Smartphone

2014-04-01
2014-01-0183
Customer vehicle usage monitoring is one of the most fundamental elements to consider in the process of developing a durable vehicle. The extant method to research customer vehicle usage takes considerable time and effort because it requires attaching a series of sensors to the vehicle-gyroscope, accelerometer, microphone, and GPS-to gather information through data logs and then to analyze data in a computer where designated analyzing software has been installed. To solve the problem, this paper introduces a new concept of integrated system developed to examine customer vehicle usage that can analyze data by collecting it from a variety of sensors installed on a smartphone.
Technical Paper

A Study on the Strategy and Implementing Technology for the Development of Luxurious Driving Sound

2014-04-01
2014-01-0035
This paper describes a systematic approach to the development of a luxurious driving sound. In the first step, the luxurious sound is conceptualized through jury test, factor analysis and regression analysis. From the results, the main factors and the correlation equation for the luxurious sound are extracted. Also, customer's preference for the luxurious sound is investigated from the customer clinic. In the second step, three core axes and the detailed indices for luxurious sound are defined and quantified. These core axes are a dynamic sound character, a sound balance and a sound harmony. These core axes are also composed of detailed indices and quantified by guide lines. In the third step, each contribution of the sub-systems for sound quality is identified and the target values and methods for implementing the luxurious sound are suggested. In this process, noise path analysis and the customer's preference in each region are considered.
Technical Paper

A development of diesel oxidation catalyst and the evaluation of its performance characteristic

2000-06-12
2000-05-0287
The new concept oxidation for diesel engine has been developed. It has been designed to use under circumstances of the "dry condition" of exhausted emission, which indicates low soluble organics and high dry soot concentration under high exhaust gas temperature. For the reliability and performance of catalysts in dry condition, several design concepts were established. First of all, extremely low sulfate formation on catalyst at high temperature conditions, and an improved soluble organic burning characteristics was required. A minimization of deposition of the particulate component, especially sulfate, was obtained from the adjustment of washcoat loading and material property. Six different types of catalysts have been prepared and tested in a laboratory. Diesel vehicle test showed the possibility that soluble organic could be removed mostly with minimal sulfate formation.
Technical Paper

A study on Reducing the Computing Burden of Misfire Detection using a Conditional Monitoring Method

2004-03-08
2004-01-0722
This paper presents a conditional misfire monitoring method to reduce the computing burden of the motoring. In this conditional monitoring method, the ECU performs misfire detection only when there is high probability of misfire events. The condition for performing the misfire detection is determined by the pre-index which is defined as the deviation of the segment durations of the crankshaft in this paper. The quantity of the code of calculating the pre-index is 7 times less than that of a conventional monitoring method so that the computing burden can be reduced with the conditional monitoring method. The experimental results shown that the pre-index and the conditional monitoring method are valid.
Technical Paper

A throttle/brake control law for vehicle intelligent cruise control

2000-06-12
2000-05-0369
A throttle/brake control law for the intelligent cruise control (ICC) system has been proposed in this paper. The ICC system consists of a vehicle detection sensor, a controller and throttle/brake actuators. For the control of a throttle/brake system, we introduced a solenoid-valve-controlled electronic vacuum booster (EVB) and a step-motor-controlled throttle actuator. Nonlinear computer model for the electronic vacuum booster has been developed and the simulations were performed using a complete nonlinear vehicle model. The proposed control law in this paper consists of an algorithm that generates the desired acceleration/deceleration profile in an ICC situation, a throttle/brake switching logic and a throttle and brake control algorithm based on vehicle dynamics. The control performance has been investigated through computer simulations and experiments.
Technical Paper

Adaptive Inverse Control of Vibration Exciter for Tracking Target Acceleration of a Car Subsystem

2024-06-12
2024-01-2920
This research aims to develop an inverse control method capable of adaptively simulating dynamic models of car subsystems in the rig-test condition. Accurate simulation of the actual vibration conditions is one of the most crucial factors in realizing reliable rig-test platforms. However, most typical rig tests are conducted under simple random or harmonic sweep conditions. Moreover, the conventional test methods are hard to directly adapt to the actual vibration conditions when switching the dynamic characteristics of the subsystem in the rig test. In the present work, we developed an inverse controller to adaptively control the vibration exciter referring to the target vibration signal. An adaptive LMS filter, employed for the control algorithm, updated the filter weights in real time by referring to the target and the measured acceleration signals.
Technical Paper

An Application of Acoustic Metamaterial for Reducing Noise Transfer through Car Body Panels

2018-06-13
2018-01-1566
This paper presents the design of an additional structure based on acoustic metamaterial (AMM) for the reduction of vibro-acoustic transfer function of a car body panel. As vehicles are lighter and those engine forces are bigger recently, it has become more difficult to reduce the vibration and noise transfer through body panels by using just conventional NVH countermeasures. In this research, a new approach based on AMM is tried to reduce the vibration and noise transfer of a firewall panel. First, a unit cell structure based on the locally resonant metamaterial is devised and the unit cell’s design variables are studied to increase the wave attenuation in the stop band of a dispersion curve, where the Floquet-Bloch theorem is used to estimate the dispersion curve of a two-dimensional periodic structure. Also, the vibration transfer and the vibro-acoustic transfer are predicted in a FE model of meta-plate which is composed of a periodic system of the devised unit cell.
Technical Paper

Analysis of Vehicle Voice Recognition Performance in Response to Background Noise and Gender Based Frequency

2017-06-05
2017-01-1888
Voice Recognition (VR) systems have become an integral part of the infotainment systems in the current automotive industry. However, its recognition rate is impacted by external factors such as vehicle cabin noise, road noise, and internal factors which are a function of the voice engine in the system itself. This paper analyzes the VR performance under the effect of two external factors, vehicle cabin noise and the speakers’ speech patterns based on gender. It also compares performance of mid-level sedans from different manufacturers.
Technical Paper

Automated Optimizing Calibration of Engine Driveability on the Dynamic Powertrain Test Bed

2013-10-14
2013-01-2588
Engine calibration on the powertrain test bed with transient mode is proposed with dynamic powertrain test bed having low inertia dynamometer. Automated ECU (Engine Control Unit) calibration system is completed with the combination of experimental design software, powertrain test bed, evaluation tools and their electrical interfaces. The process is composed up of the system interface definition, test design using DoE skill, test proceedings by step sequence of connecting systems, measured data collecting, mathematical model and optimization result extraction at the end. All the processes are automated by interfaces between the systems. Acceleration surge is minimized by proposed process by optimizing combustion control labels and tip in driveability is maximized by manipulating torque filter labels of EMS (Engine Management System) logic. Their detailed steps from the problem definition to the verification test results of improved design with vehicle test are presented.
Technical Paper

Available Power and Energy Prediction Using a Simplified Circuit Model of HEV Li-ion Battery

2010-04-12
2010-01-1074
Due to aging of a battery over lifetime, the rated power and nominal energy capacity will be reduced compared with the initial rated power and capacity. These result in influences on the vehicle driving performance and fuel economy. To monitor and diagnose the aging of the battery, in this paper, the method of predicting the available rated power and energy capacity of Li-ion battery under in-vehicle condition is proposed. Under constant power test, available power is calculated from the estimated parameters using recursive least square method. Further, available energy capacity is evaluated through SOH(cn) defined by the ratio of initial state-of-charge (SOC) variation to present SOC (\GdSOC ⁿ /ΔSOC ⁿ ) variation under arbitrary in-vehicle driving cycles. To verify the proposed method, experiments for aging Li-ion battery are performed in hybrid electric vehicle.
Technical Paper

Bio-Based Composites and Their Applications for Auto Interior Parts

2016-04-05
2016-01-0512
Polylactide (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and sugar beets, has attracted much attention for automotive parts application. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the PLA composites including stereocomplexed with L- and D-PLA, we developed the unit processes such as fermentation, separation, lactide conversion, and polymerization. We investigated D-lactic acid fermentation with a view to obtaining the strains capable of producing D-lactic acid, and through catalyst screening test for polycondensation and depolymerization reactions, we got a new method which shortens the whole reaction time of lactide synthesis step. Poly(d-lactide) is obtained from the ring-opening polymerization of d-lactide. Also we investigated several catalysts and polymerization conditions.
Technical Paper

Characterization of High Temperature Properties in Al Matrix Composite Fabricated by the Low Pressure Squeeze Infiltration Process

1994-03-01
940809
Al matrix composites containing alumina (Al2O3) fibers are fabricated by the low pressure (25MPa) squeeze infiltration process which is suitable for the low cost mass production. Mechanical properties at room temperature as well as elevated temperatures (250°C, 350°C) are improved due to the presence of reinforcements. Upto 350°C, composites maintain a reasonable strength, which is much better than strength of the conventional Al alloy. Composites have equivalent wear rates to those of Ni - resist cast iron. Wear behavior is changed with the sliding speed. At low sliding speed, wear proceeds by the excessive failure of matrix and fiber, whilst, at higher sliding speed, matrix fracture near fiber plays a major role in wear. Wear resistance of 125°C is inferior to that of room temperature due to the reduction of mechanical properties followed by matrix softening and poor bonding.
X