Refine Your Search

Topic

Author

Search Results

Technical Paper

A Novel Vehicle-to-Vehicle Fast Charging Control System Utilizing Motor and Inverter in EV

2022-03-29
2022-01-0170
As electric vehicles become more widespread, such vehicles may be subject to “range anxiety” due to the risk of discharging during driving or the discharging when left unused for a long period. Accordingly, a vehicle equipped with a mobile charger that can provide a charge in an emergency. The vehicle with the mobile charger is usually composed of a large capacity battery, a power converter in a small truck. However, the large capacity battery and the power converter are disadvantageous in that they are large in size and expensive and should be produced as a special vehicle. In this paper, we propose a method to solve the problem using an internal EV system without requiring an additional power generation, battery and a charging-and-discharging device. The method is a novel Vehicle-to-Vehicle (V2V) fast charging control system utilizing motor and inverter in EV.
Technical Paper

A Research on Brand Sound Positioning and Implementing with Active Sound Design

2017-06-05
2017-01-1754
This paper aims to establish a systematic process of developing a brand driving sound. Firstly, principal factors of a brand sound identity are extracted from factor analysis of many sample cars. As a result, brand sound positioning map is drawn using jury test data. Also, the multiple regression analysis of subjective and objective test results is carried. As a result, the principal factors are expressed by objective test data and brand sound positioning map can be easily updated from the measurement data. In addition, what should be improved for designing a target sound is reviewed. Secondly, various technologies of target sound design are discussed to involve the brand identity and vehicle’s character in driving sound. Also, an efficient tool to implement the target sound with an active sound design (ASD) system in a vehicle is introduced. This tool enables to efficiently design, tune and simulate a target sound for ASD system in a laboratory.
Technical Paper

A Study on an Integrated System to Measure and Analyze Customer Vehicle Usage Monitoring through a Smartphone

2014-04-01
2014-01-0183
Customer vehicle usage monitoring is one of the most fundamental elements to consider in the process of developing a durable vehicle. The extant method to research customer vehicle usage takes considerable time and effort because it requires attaching a series of sensors to the vehicle-gyroscope, accelerometer, microphone, and GPS-to gather information through data logs and then to analyze data in a computer where designated analyzing software has been installed. To solve the problem, this paper introduces a new concept of integrated system developed to examine customer vehicle usage that can analyze data by collecting it from a variety of sensors installed on a smartphone.
Technical Paper

A Study on the Transient Characteristics of Automatic Transmission with Detailed Dynamic Modeling

1994-03-01
941014
Transient characteristics during gear ratio change including the disturbance of output torque have been important issues in the study of passenger car automatic transmission. In this paper, to investigate the transient characteristics during gear ratio change, a detailed dynamic model of the power transmission system of a passenger car focused on the automatic transmission was proposed and the governing dynamic equations were derived and solved. The results of simulation showed good agreements with the experimental data. It was proved that the suggested dynamic model is very useful to analyze the phenomena occurred during the speed ratio change.
Technical Paper

Available Power and Energy Prediction Using a Simplified Circuit Model of HEV Li-ion Battery

2010-04-12
2010-01-1074
Due to aging of a battery over lifetime, the rated power and nominal energy capacity will be reduced compared with the initial rated power and capacity. These result in influences on the vehicle driving performance and fuel economy. To monitor and diagnose the aging of the battery, in this paper, the method of predicting the available rated power and energy capacity of Li-ion battery under in-vehicle condition is proposed. Under constant power test, available power is calculated from the estimated parameters using recursive least square method. Further, available energy capacity is evaluated through SOH(cn) defined by the ratio of initial state-of-charge (SOC) variation to present SOC (\GdSOC ⁿ /ΔSOC ⁿ ) variation under arbitrary in-vehicle driving cycles. To verify the proposed method, experiments for aging Li-ion battery are performed in hybrid electric vehicle.
Technical Paper

Combined Condensing Air-Conditioning System

2014-04-01
2014-01-0712
In order to improve the fuel consumption ratio of the vehicle, a great deal of research is being carried out to improve air-conditioning efficiency. Increasing the efficiency of the condenser is directly connected to the power consumption of the compressor. This paper describes an experimental method of using an additional water-cooled condenser to reduce power consumption and decrease discharge pressure of the air-conditioning system. First, the principle of a combined cooling (water + air) method was evaluated theoretically. Next, experimental proof was conducted with the additional water-cooled condenser. The shape and structure is similar to the plate type of the transmission oil cooler used in a radiator. Through a number of tests, it was found that it is possible is to reduce power consumption of compressor by decreasing discharge pressure.
Technical Paper

Development of Accelerated Reliability Testing Method for Electric Vehicle Motor and Battery System

2014-04-01
2014-01-0748
Currently, the interest in accelerated reliability testing (ART) of electric vehicles parts has been increasing. In particular, an electric motor and battery are vital components of battery powered electric vehicles. The electric motor has two major roles, to discharge or charge battery when it is driven or braking. For analyzing the exact behavior mechanism of electric motor and predicting lithium-ion battery cell degradation, new accelerated reliability testing technology is required. This paper describes the results of research and development in new approach to reliability testing for electric vehicles. The methodology to measure a precise motor output torque of the rotating rotor using telemetry system was provided. The electric energy quantities as well as the used quantities of the electric power were also analyzed. The results of research and development in new approach to reliability testing for electric vehicles were systematized and reflected in development.
Technical Paper

Development of Eco-Driving Guide System

2011-10-06
2011-28-0034
The Eco-driving indicator is a colored lamp on a cluster to lead a driver to smoothen acceleration of a vehicle. Informed by the indicator, a driver learns how deep to push a gas pedal for a better fuel economy. The Eco-driving guide system outputs a vehicle fuel efficient state by the Eco-driving indicator. It is based on BSFC map, engine torque map, A/T shift pattern data, engine operation status and transmission operating status. With the Eco-driving guide system, vehicle fuel efficiency can be improved by 4∼26%.
Technical Paper

Development of Fuel Cell Hybrid Electric Vehicle Fueled by Methanol

2003-03-03
2003-01-0421
Hyundai has developed a Santa Fe fuel cell vehicle (FCV) in which methanol fuel processor is installed and integrated with PEM fuel cell system. Pure hydrogen is produced from the mixture of methanol and water by steam reforming followed by metal membrane purification and is then fed to fuel cell system to generate electrical energy. This system has the advantage of simplifying the integration of fuel cell subsystem and fuel processor subsystem. The operation of brassboard system has been carried out for performance evaluation and the development of fuel cell controller. And then the methanol reforming fuel cell system has been incorporated into electric drive train in the vehicle. AC induction motor is powered by the hybrid system using fuel cell and a nickel metal hydride battery as energy sources to improve the system efficiency and the acceleration response of the vehicle.
Technical Paper

Development of Two Oil Pumping System for Automatic Transmission

2014-04-01
2014-01-1766
The efforts to improve automatic transmission (AT) efficiency for vehicle fuel economy are constantly continuing. In an AT the oil pump is the largest power loss factor. Therefore the effect on fuel economy is very high. The AT oil pump system has structural contradictions (high pressure × high flow), and the efforts to improve these areas are concentrated. In this paper, a two oil pumping system was designed to improve the efficiency and performance of a 6 speed AT installed in a Hybrid Electric Vehicle (HEV) [1], and the improvement was confirmed by a prototype experiment. As a result of the experiment, two pumping system was shown to improve vehicle fuel economy while reducing noise and oil pressure vibration.
Technical Paper

Development of Vibration Suppression Control Strategy for Motor System of Eco-Friendly Vehicles

2014-04-01
2014-01-1874
Development of eco-friendly vehicles have risen in importance due to fossil fuel depletion and the strengthened globalized emission control regulatory requirements. A lot of automotive companies have already developed and launched various types of eco-friendly vehicles which include hybrid vehicles (HEVs) or electric vehicles (EVs) to reduce fuel consumption. To maximize fuel economy Hyundai-Kia Motor Company has introduced eco-friendly vehicles which have downsized or eliminated vibration damping components such as a torque converter. Comparing with Internal Combustion Engine(ICE) powered vehicles, one issue of the electric motor propulsion system with minimized vibration damping components is NVH (Noise, Vibration and Harshness). The NVH problem is caused by output torque fluctuation of the motor system, resulting in the degradation of ride comfort and drivability.
Technical Paper

Effect of Normalized Microstructure in Alloy Steel on the Performance of Planetary Gear Set of Automatic Transmission

1997-02-24
970972
The banded microstructure of pearlite and ferrite in normalized alloy steel is susceptible to thermal distortion during carburizing process due to its unidirectional orientation parallel to rolling direction. The planetary gears with material of banded microstructure have been experienced in high thermal distortion during carburizing and quenching process and result in uneven surface hardness and effective case depth at the inside of pinion gear after honing. These defects played failure initiation site roles in durability test during development of new automatic transmission. The galling between the contacting components in severe lubricating system was the main failure mechanism. Double normalizing at 920 °C was designed to resolve the banded microstructure of normalized alloy steel. The microstructure and grain size of the double heated steel became equiaxed and fine due to homogenizing and recrystallization through double heat treatment.
Technical Paper

Effects of Stator Shapes on Hydraulic Performances of an Automotive Torque Converter with a Squashed Torus

2002-03-04
2002-01-0886
Automotive torque converters have recently been designed with a significant flat shape for the purpose of achieving a smaller axial size and reducing weight. Generally, the stator is a very significant component to shorten the axial length of a torque converter. The overall performances of a torque converter, however, mainly depend on the stator geometry. The goal of this study is to investigate effects of the stator with two different shapes suitable for an axially squashed torus. The torque converters were analyzed and experimented in order to confirm the effects of stator shapes on the overall hydraulic performance. Prior to fabricating a prototype sample, complex circulating flow characteristics of the proposed torque converter were investigated by computational analysis using three dimensional CFD code, STAR-CD®. Experimental analysis was also performed and compared with computational results. As the stator blade shapes changed, the torque capacity factor could be tuned.
Technical Paper

Estimation technique of air content in automatic transmission fluid by measurign effective bulk modulus

2000-06-12
2000-05-0107
It is well known that the entrained air in oil causes appreciable reduction in the stiffness of hydraulic systems. It makes the response delays of the systems and sometimes destroys the stability. Because the hydraulic systems used in most of automatic transmissions are operated in relatively low pressure and high temperature, it is very important to analyze the effects of the air included in automatic transmission fluid. However, it is hard to derive the generalized model to describe the effective bulk modulus theoretically or measure it in actual operating conditions of automatic transmissions. This paper reviews the previous studies of the air effects in hydraulic systems and the measurement techniques of the effective bulk modulus in operating conditions. Based on this work, the theoretical model with moderate complexity and the measurement technique of the effective bulk modulus considering entrained air effect at real operating conditions are suggested.
Technical Paper

Identification of Forces Transmitted onto Car Body Through Rubber Bushings in Suspension System Under Driving Conditions

1999-05-17
1999-01-1841
This paper presents a study on using rubber bushing as a sensor for the identification of forces transmitted onto the car body. The method starts from the idea that the transmission forces can be related to the deformation of the rubber bushing multiplied by its stiffness. Deformation of the rubber bushing is estimated from relative vibrations across the bushing. Simple theories are presented to deal with modeling of the rubber bushing and processing of the vibration mesurements on the link and car body to identify the transmission forces. Then, validity of the proposed approach is shown by applications to a suspension system under several driving conditions.
Technical Paper

Identification of the Relation Between Crank Shaft Bending and Interior Noise of A/T Vehicle in Idle State

1993-03-01
930618
This paper shows the cause and the solution to the uncommon noise which happens ½ order component of engine rpm when a vehicle with automatic transmission has an air conditioning load and “drive” range load on the engine. By measuring cylinder pressure, main bearing cap vibration, engine mount vibration, and interior noise simultaneously, the cause of the noise can be proved by analyzing and comparing the data. The cause of the uncommon noise is bending vibration of the crank shaft. To solve the problem, one can change the crank shaft dynamics by reducing the mass of the damper pulley.
Technical Paper

Idle Sound Quality Development for Diesel V6 Engine

2011-05-17
2011-01-1563
A comprehensive investigation was carried out in order to develop the idle sound quality for diesel V6 engine when the engine development process is applied to power-train system, which included new 8-speed automatic transmission for breaking down the noise contribution between the mechanical excitation and the combustion excitation. First of all, the improvement of dynamic characteristic can be achieved during the early stages of the engine development process using experimental modal analysis (EMA) & the robust design of each engine functional system. In addition, the engine structural attenuation (SA) is enhanced such that the radiated combustion noise of the engine can be maintained at a target level even with an increased combustion excitation. It was found that the engine system has better parts and worse parts in frequency range throughout the SA analysis. It is important that weak points in the system should be optimized.
Technical Paper

Improved Cyclic Performances of Li-Sulfur Batteries with Sulfone-Based Electrolyte

2014-04-01
2014-01-1844
The effects of electrolyte on the cyclability of Li/S battery were investigated in this work. The electrochemical properties of single component ether solvents and a binary mixture of ether solvents were studied. These ether-based electrolytes have polysulfide shuttle problems which result in severe low Coulombic efficiency. To overcome these issues, sulfone-based solvent which forms a stable passivation film at the anode surface were used. As a result, the proper composition of sulfone-based electrolyte were obtained. Its capacity and reversible capacity retention were improved to 715 mAh/g and 72.6% which were increased by 52.1% and 63.1%, respectively, compared to those of ether-based electrolyte.
Technical Paper

In-Gear Slip Control Strategy of Dry-Clutch Systems Using a Sliding Mode Control

2019-04-02
2019-01-1305
This paper proposes a clutch control strategy during in-gear driving situations for Dual Clutch Transmissions (DCTs). The clutch is intentionally controlled to make small amount of a slip to identify the torque transfer capacity. The control objective of this phase is to ensure the clutch slip fairly remaining the specified value. To achieve this, the micro-slip controller is designed based on sliding mode control theory. Experimental verifications performed on onboard control system of the DCT equipped vehicle demonstrate that the proposed controller good tracking performance of the desired slip speed.
Technical Paper

Learning Slip Control of an Engine Clutch in a Parallel Hybrid Electric Vehicle for Linear Vehicle Launch

2014-04-01
2014-01-1745
This work studied the control technique for the engine clutch engagement at launch for the TMED parallel HEV for the improved drivability and dynamic performance. Analysis are done on the speed synchronization of the clutch plates, the speed control using the starter motor (ISG), and the fluid pressure control for the clutch. Possible external factors such as changes in the friction coefficient of transmission fluid, temperature variation, auxiliary power and pressure losses are identified and their effects on the targeted dynamic performance are examined. The targeted system performance was achieved with a learning control technique using fluid pressure as the only control input. This involves the compensation for the effect of external factors on the fluid pressure profile and this effect is memorized for the subsequent slip-launch application.
X