Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

A Study on the Friction Characteristics of Engine Bearing and Cam/Tappet Contacts from the Measurement of Temperature and Oil Film Thickness

1995-10-01
952472
This paper discusses the effects of lubricant viscosity on the friction characteristics of engine bearing and cam/tappet which are the typical moving parts of an engine and operate in different lubrication regimes. Based on the measured crankshaft temperatures, we calculated the friction coefficient of the engine bearing according to Sommerfeld number by a simple heat equilibrium equation. The oil film thicknesses between cam and tappet were measured in a motored cylinder head which had a direct acting type overhead camshaft. The boundary and viscous friction components were estimated separately according to a parameter defined as the ratio of the central oil film thickness to the composite surface roughness. These two friction components were added to calculate the friction coefficient. Finally, the motoring friction torque was measured and compared with the estimated friction coefficient.
Technical Paper

Development of Valvetrain System to Improve Knock Characteristics for Gasoline Engine Fuel Economy

2014-04-01
2014-01-1639
It is difficult to reach higher compression ratios of the gasoline engine even though higher compression ratios improve thermal efficiency. One of the barriers is large torque drop led by knocking. Extensive researches to suppress knocking of the gasoline engine have been conducted. It is focused on lowering the temperature of fuel mixture in combustion chamber at compression top dead center (TDC). This paper covers the new valvetrain system to decrease the temperature of exhaust valve bottom (combustion) side. Hollow head and stem sodium filled valve (HHSV) have shown more heat transfer from combustion chamber to valve seat insert and valve guide, and higher thermal conductivity valve seat insert (HVSI) and valve guide (HVG) help to decrease valve temperature lower by higher heat transfer.
Technical Paper

Ethanol Flex Fuel system with Delphi Heated injector application

2014-04-01
2014-01-1369
After the second worldwide oil crisis, Brazil put in place by 1975 a strategic plan to stimulate the usage of ethanol (from sugar cane), to be mixed to the gasoline or to be sold as 100% ethanol fuel (known as E100). To enable an engine to operate with both gasoline and ethanol (and their mixtures), by 2003 the “Flex Fuel” technology was implemented. By 2012 calendar year, from a total of about 3.8 million vehicles sold in the Brazilian market, 91% offered the “Flex Fuel” technology, and great majority used a gasoline sub-tank to assist on cold starts (typically below 15°C, where more than 85% of ethanol is present in fuel tank). The gasoline sub-tank system suffers from issues such as gasoline deterioration, crash-worthiness and user inconvenience such as bad drivability during engine warm up phase. This paper presents fuel injector technologies capable of rapidly electrically heating the ethanol fuel for the Brazilian transportation market.
Technical Paper

Flame Propagation and Knock Detection Using an Optical Fiber Technique in a Spark-Ignition Engine

1993-11-01
931906
In this research, an optical system for the detection of the flame propagation under the non-knocking and knocking conditions is developed and applied to a mass produced four cylinder SI engine. The normal flames are measured and analyzed under the steady state operating conditions at various engine speeds. For knocking cycles, the flame front propagations before and after knock occurrence are simultaneously taken with cylinder pressure data. In non-knocking and knocking cycles, flame propagation shows cycle-by-cycle variations, which are quite severe especially in the knocking cycles. The normal flame propagations are analyzed at various engine speeds, and show that the flame front on the exhaust valve side becomes faster as the engine speed increases. According to the statistical analysis, knock occurence location and flame propagation process after knock can be categorized into five different types.
Technical Paper

Low-pressure molding compound hood panel for a passenger car

2000-06-12
2000-05-0110
Low-pressure molding compound (LPMC) is a new kind of composite material which can be used for automotive body panels. LPMC has similar mechanical properties compared to conventional sheet molding compound (SMC) but excellent moldability due to the different thickening system. In this paper, we prepared LPMC hood prototype for a passenger car using a low-cost tooling. Inner panel and outer panel were made of general-density- and low-density-grade LPMC, respectively, in order to maximize weight reduction maintaining surface quality. Physical properties containing tensile strength, flexural modulus, notched Izod impact strength of those samples were investigated. In addition, CAE simulation was also done for strength analysis of the hood assembly.
Technical Paper

Mechanical Properties and Fatigue Crack Propagation Behavior of Hybrid Metal Matrix Composites

1996-02-01
960577
The objective of this study is to investigate mechanical properties and fatigue crack propagation behavior in hybrid metal matrix composites by squeeze infiltration method (15% Al2O3 + SiCw/6061Al). The mechanical properties of Al2O3+SiCw/Al composites including tensile strength, yield strength, Young's modulus, were improved compared with those of unreinforced alloy and Al203/Al composites. The hybrid composites were more ductile than Al2O3/Al composites. Fatigue crack propagation rates of both Al2O3/Al and Al2O3+SiCw/Al composites showed a similar behavior in region II. Their propagation rates were higher in entire ▵K region compared with that of 6061 Al alloy. From the crack path morphology, fatigue cracks propagated linearly and smoothly in 6061 Al alloy. However, in the metal matrix composites cracks tend to avoid the reinforcements promoting crack deflection. It was observed that crack deflection enhanced crack closure due to wedging phenomenon.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Research and Development of Hyundai Flexible Fuel Vehicles (FFVs)

1993-03-01
930330
This paper describes Hyundai's research and development work on a flexible fuel vehicle (FFV). The work on FFV has been conducted to evaluate its potential as an alternative to the conventional gasoline vehicle. Hyundai FFV described here can operate on M85, gasoline, or any of their combinations, in which the methanol concentration is measured by an electrostatic type fuel sensor. For that operation, a special FFV ECU has been developed and incorporated in the FFV. The characteristics affecting FFV operation, such as FFV ECU control strategy and injector flow rate, have been investigated and optimized by experiment. Various development tests have been performed in view of engine performance, durability, cold startability, and exhaust emissions reduction. The exhaust gas aftertreatment system being consisted of manifold type catalytic converter(MCC) and secondary air injection system has shown good emission reduction performance including formaldehyde emission.
Technical Paper

Synergies of Cooled External EGR, Water Injection, Miller Valve Events and Cylinder Deactivation for the Improvement of Fuel Economy on a Turbocharged-GDI Engine; Part 2, Engine Testing

2019-04-02
2019-01-0242
As CO2 legislation tightens, the next generation of turbocharged gasoline engines must meet stricter emissions targets combined with increased fuel efficiency standards. Recent studies have shown that the following technologies offer significant improvements to the efficiency of turbocharged GDI engines: Miller Cycle via late intake valve closing (LIVC), low pressure loop cooled EGR (LPL EGR), port water injection (PWI), and cylinder deactivation (CDA). While these efficiency-improving technologies are individually well-understood, in this study we directly compare these technologies to each other on the same engine at a range of operating conditions and over a range of compression ratios (CR). The technologies tested are applied to a boosted and direct injected (DI) gasoline engine and evaluated both individually and combined.
Technical Paper

The Characteristics of Carbon Deposit Formation in Piston Top Ring Groove of Gasoline and Diesel Engine

1998-02-23
980526
In order to investigate the characteristics of top ring groove deposit formation in gasoline and diesel engine, engine test and simulation test were performed. From component analysis of used oils sampled from actual running engines, oxidation and nitration for gasoline engine and soot content for diesel engine were selected as main parameters for evaluating oil degradation. In gasoline engine, deposit formation increases linearly with oxidation and nitration, and especially, oil oxidation is a dominant factor on the deposit formation rather than nitration. And, deposit formation increases gradually in low temperature ranges below 260°C even if oils are highly oxidized, but it increases rapidly if piston top ring groove temperature is above 260°C. In diesel engine, deposit formation is highly related to soot content in lubricating oils.
Technical Paper

The Effect of Tempering on Mechanical and Fatigue Properties in Gas-Carburized Cr-Mo Gear Steel

1997-02-24
970709
The effects of tempering on carburized Cr-Mo gear steel were investigated through mechanical and fatigue tests. Specimens were carburized at 900°C for 180 minutes, and then oil quenched at 150°C for 10 minutes of holding time and cooled to room temperature. The subsequent tempering process was performed to 160°C for 90 minutes. Surface hardness and residual compressive stress were decreased by tempering treatment, whereas tensile strength, yield strength and impact energy were increased. Bending fatigue endurance limits for both tempered and untempered specimens were same as 779MPa. The strength of roller contact fatigue is also not greatly influenced by tempering treatment. Thermal distortion for carburized transfer driven gear before and after tempering exhibited a similar distribution. Microstructural changes during tempering were also discussed.
Technical Paper

The Flexible EV/HEV and SOC Band Control Corresponding to Driving Mode, Driver's Driving Style and Environmental Circumstances

2012-04-16
2012-01-1016
Recently, in accordance with the increased interest of consumer in fuel efficiency due to the phenomenon of high oil price, complaints against actual fuel efficiency in the road in comparison with the certified fuel efficiency have been raised frequently. Especially in case of the hybrid vehicle which is highly popular for the reason of its high fuel efficiency compared with that of existing gasoline car, deviation in the fuel efficiency will be higher compared with that of gasoline car in accordance with the driving mode (downtown/highway), driver's driving style (wild/mild) and external environmental condition (gradient/temperature/altitude). To solve them, this paper developed a method so that the SOC (State Of Charge), EV/HEV mode transition point can be controlled variably in accordance with the driving mode, driver's driving style and external environmental condition by making the most of characteristics of hybrid.
X