Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

360° vs. 270° vs. 180°: The Difference of Balancing a 2 Cylinder Inline Engine: Design, Simulation, Comparative Measurements

2012-10-23
2012-32-0106
Beside the automotive industry, where 2-cylinder inline engines are catching attention again, twin-cylinder configurations are quite usual in the small engine world. From stationary engines and range-extender use to small motorcycles up to big cruisers and K-Cars this engine architecture is used in many types of applications. Because of very good overall packaging, performance characteristics and not least the possibility of parts-commonality with 4-cylinder engines nearly every motorcycle manufacturer provides an inline twin in its model range. Especially for motorcycle applications where generally the engine is a rigid member of the frame and vibrations can be transferred directly to the rider an appropriate balancing system is required.
Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

A 3D Linear Acoustic Network Representation of Mufflers with Perforated Elements and Sound Absorptive Material

2017-06-05
2017-01-1789
The acoustics of automotive intake and exhaust systems is typically modeled using linear acoustics or gas-dynamics simulation. These approaches are preferred during basic sound design in the early development stages due to their computational efficiency compared to complex 3D CFD and FEM solutions. The linear acoustic method reduces the component being modelled to an equivalent acoustic two-port transfer matrix which describes the acoustic characteristic of the muffler. Recently this method was used to create more detailed and more accurate models based on a network of 3D cells. As the typical automotive muffler includes perforated elements and sound absorptive material, this paper demonstrates the extension of the 3D linear acoustic network description of a muffler to include the aforementioned elements. The proposed method was then validated against experimental results from muffler systems with perforated elements and sound absorptive material.
Technical Paper

A BIW Structure Research of Light Weight Vehicle with High Stiffness by Steel

2015-03-10
2015-01-0061
The focus of this paper is to develop an innovative vehicle layout and optimize vehicle body structure with the latest lightweight steel technologies, such as hydro-forming and hot stamping. Our BIW structure achieved a mass savings of 28 kg (−10%) compared to the mass of baseline BIW structure. (Base BIW : MD_Elantra)
Technical Paper

A Comprehensive Study on Different System Level Engine Simulation Models

2013-04-08
2013-01-1116
Engine simulation can be performed using model approaches of different depths in capturing physical effects. The present paper presents a comprehensive comparison study on seven different engine models. The models range from transient 1D cycle resolved approaches to steady-state non-dimensional maps. The models are discussed in the light of key features, amount and kind of required input data, model calibration effort and predictability and application areas. The computational performance of the different models and their capabilities to capture different transient effects is investigated together with a vehicle model under real-life driving conditions. In the trade-off field of model predictability and computational performance an innovative approach on crank-angle resolved cylinder modeling turned out to be most beneficial.
Technical Paper

A Computational Study on the Impact of Cycle-to-Cycle Combustion Fluctuations on Fuel Consumption and Knock in Steady-State and Drivecycle Operation

2013-09-08
2013-24-0030
In spark-ignition engines, fluctuations of the in-cylinder pressure trace and the apparent rate of heat release are usually observed from one cycle to another. These Cycle-to-Cycle Variations (CCV) are affected by the early flame development and the subsequent flame front propagation. The CCV are responsible for engine performance (e.g. fuel consumption) and the knock behavior. The occurrence of the phenomena is unpredictable and the stochastic nature offers challenges in the optimization of engine control strategies. In the present work, CCV are analyzed in terms of their impact on the engine knock behavior and the related efficiency. Target is to estimate the possible fuel consumption savings in steady-state operation and in the drivecycle, when CCV are reduced. Since CCV are immanent on real engines, such a study can only be done by means of simulation.
Technical Paper

A Conceptual Analysis in the Early Design Stage for the Road-Noise Reduction using FRF-Based Substructuring

2022-03-29
2022-01-0312
NVH analysis based on numerical simulations before actual test vehicle is available becomes common process in the automotive industry. Furthermore, the latest work scope is extending even to conceptual study in the very early design stage, beyond traditional numerical simulations simply using 3-D CAD data. In case when reasonable information is provided at this very early vehicle development stage, a better decision on the design concept would be possible, and subsequent design process can be carried out in more efficient manner. The core of this trend is that it allows us to predict vehicle performance at the conceptual design stage without 3-D CAD data, and then, with this prediction, to suggest meaningful design directions for next stage. From this point of view, FRF-Based Substructuring (FBS) methodology has potential to be used as an appropriate tool for this purpose.
Technical Paper

A Correlation Methodology between AVL Mean Value Engine Model and Measurements with Concept Analysis of Mean Value Representation for Engine Transient Tests

2017-09-04
2017-24-0053
The use of state of the art simulation tools for effective front-loading of the calibration process is essential to support the additional efforts required by the new Real Driving Emission (RDE) legislation. The process needs a critical model validation where the correlation in dynamic conditions is used as a preliminary insight into the bounds of the representation domain of engine mean values. This paper focuses on the methodologies for correlating dynamic simulations with emissions data measured during dynamic vehicle operation (fundamental engine parameters and gaseous emissions) obtained using dedicated instrumentation on a diesel vehicle, with a particular attention for oxides of nitrogen NOx specie. This correlation is performed using simulated tests run within AVL’s mean value engine and engine aftertreatment (EAS) model MoBEO (Model Based Engine Optimization).
Technical Paper

A Cross Domain Co-Simulation Platform for the Efficient Analysis of Mechatronic Systems

2010-04-12
2010-01-0239
Efficient integration of mechanics and microelectronics components is nowadays a must within the automotive industry in order to minimize integration risks and support optimization of the entire system. We propose in this work a cross domain co-simulation platform for the efficient analysis of mechatronic systems. The interfacing of two state-of-the-art simulation platforms provides a direct link between the two domains at an early development stage, thus enabling the validation and optimization of the system already during modeling phase. The proposed cross-domain co-simulation is used within our TEODACS project for the analysis of the FlexRay technology. We illustrate using a drive-by-wire use case how the different architecture choices may influence the system.
Technical Paper

A Development of SCR (Selective Catalytic Reduction) Model and Its Applications

2022-03-29
2022-01-0557
A physics-based model for SCR (Selective Catalytic Reduction) was developed based on five independent SGB (Synthetic Gas Bench) tests. There are NH3 adsorption & desorption test, NO oxidation test, NH3 oxidation test, SCR reaction (NOx & NH3) test and SV (Space Velocity) test. To validate the accuracy of SCR model’s prediction, transient reactor tests were conducted at four different input conditions. A newly developed SCR model showed more than 90% prediction accuracy in transient test conditions in view of cumulative NOx. Validation of SCR model was conducted on 1.6L light duty diesel vehicle in the WLTC (Worldwide Harmonized Light vehicles Test Cycle). Based upon this SCR model, vehicle level SCR calibrations used for urea dosing control were made and validated in the emission test cycles like WLTC.
Technical Paper

A Development of Spindle Drive Power Trunk Lid System with Optimizing Operation Noise

2022-03-29
2022-01-0759
The power trunk lid system is a device that automatically opens and closes the trunk lid by motor, for the purpose to improve user’s convenience. This technology was applied only to high-end large cars such as Equus and Genesis. But as preference for high convenience features increases, the scope of application is gradually expanding to semi-large and mid-sized cars. Therefore, the necessity of securing profitability through cost reduction was emerged, and it made us to develop the power trunk lid system by spindle drives. Compared to the conventional swing arm drive type, the spindle drive type may achieve cost savings, lightness and easy of assembly by optimizing the required motor specifications. However, since it uses a planetary gear with high gear ratio and the high rotation speed of the motor, operating noise is relatively large.
Technical Paper

A Development of the Driver IC in LED Rear Combination Lamp for Circuit Standardization

2021-04-06
2021-01-0850
Today, many automakers are using LED lamp sources in exterior lamps to establish brand awareness and introduce specialized lamp designs. These eye-catching LED lamp source solutions require many control functions as the lamp functions are diversified and advanced, and accordingly the requirements for standardization and optimization of controllers are increasing. In particular, our LED rear combination lamps have a variety of LED loads according to the design of the lamp model, the installation position, and the diagnostic regulations, so that the design complexity and the number of specifications of the controller are increased [4]. In recent years, more and more aesthetic designs and new technologies are used by various automakers to optimize their controllers in cooperation with global partners to optimize costs [1].
Technical Paper

A Development of the Model Based Torque Feedback Control with Disturbance Observer for Electric Power Steering System

2019-04-02
2019-01-1233
Electric Power Steering (EPS) needs to meet both functional and stability requirements, it plays significant role in controlling vehicle motion. In the meantime, customers emphasizes natural steering feel which can reflect vehicle motion and road surface information while isolate unwanted external disturbances. In general, conventional EPS control algorithms exert assist torque according to driver torque measured from torque sensor, while maintaining stability using stabilizing compensator. However, there exist significant trade-off between steering feel and stability, because the performances of assist torque control and stabilizing compensator are strongly coupled. In this paper a torque feedback control algorithm for EPS system is proposed in order to overcome the trade-off, and to achieve more natural, robust steering feel.
Technical Paper

A Development of the Prediction and Optimization Tool for Wiper High Speed Performance

2019-03-25
2019-01-1417
In this paper, we focused on the robust wiping performance of high speed driven condition as an important situation for vehicle safety. Frist, we selected appropriate wiper performance parameter to accurately predict its ability not only systematic point but also vehicle point. Second, we obtained parameter sensitivity of wiper high-speed performance using DFSS technique. Third, we developed prediction and optimization tool using commercial program; Excel and Visual Basic. Finally, we improved our tool to compare vehicle test and then modified prediction coefficient for the accuracy of tool. Thus, we proposed a systematic tool to predict wiping performance in high speed vehicle, and successfully obtained efficiency when we developed the new project’s wiper performance.
Technical Paper

A Flexible Multi-Body Dynamic Model for Analyzing the Hysteretic Characteristics and the Dynamic Stress of a Taper Leaf Spring

2007-04-16
2007-01-0852
This paper proposes a modeling technique which is able to not only reliably and easily represent the hysteretic characteristics but also analyze the dynamic stress of a taper leaf spring. The flexible multi-body dynamic model of the taper leaf spring is developed by interfacing the finite element model and computation model of the taper leaf spring. Rigid dummy parts are attached at the places where a finite element leaf model is in contact with an adjacent one in order to apply contact model. Friction is defined in the contact model to represent the hysteretic phenomenon of the taper leaf spring. The test of the taper leaf spring is conducted for the validation of the reliability of the flexible multi-body dynamic model of the taper leaf spring developed in this paper. The test is started at an unloaded state with the excitation amplitude of 1∼2mm/sec and frequency of 132mm. First, the simulation is conducted with the same condition as the test.
Technical Paper

A Holistic Approach to Next-Generation Polymer Composite Pickup Bed Development and Prototyping

2024-04-09
2024-01-2432
As we move toward electrification in future mobility, weight and cost reduction continue to be priorities in vehicle development. This has led to continued interest in advanced molding processes and holistic design to enable polymer materials for demanding structural applications such as pickup truck beds. In addition to performance, it is necessary to continue to improve styling, functionality, quality, and sustainability to exceed customer expectations in a competitive market. To support development of a lightweight truck bed design, a cross-functional team objectively explored the latest materials and manufacturing technologies relevant to this application. In Phase 1 of this work, the team considered a variety of alternatives for each functional area of the bed, including thermoplastic and thermoset materials with a range of processing technologies.
Journal Article

A Hybrid Development Process for NVH Optimization and Sound Engineering Considering the Future Pass-by Homologation Demands

2016-11-08
2016-32-0043
Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
Technical Paper

A Novel Electric-Power-Steering (EPS) Control Algorithm Development for the Reference Steering Feel Tracking

2016-04-05
2016-01-1546
This paper describes a reference steering feel tracking algorithm for Electric-Power-Steering (EPS) system. Development of the EPS system with intended steering feel has been time-consuming procedure, because the feedforward map-based method has been applied to the conventional EPS system. However, in this study, a three-dimensional reference steering feel surface, which is determined from current vehicle states, is proposed. In order to track the proposed reference steering feel surface, sliding mode approach is applied to second-order steering dynamics model considering a coulomb friction model. An adaptive technique is utilized for robustness against uncertainties. In order to validate the proposed EPS control algorithm, hardware-in-the-loop simulation (HILS) has been conducted with respect to a typical steering test. It is shown that the reference steering feel is realized well by the proposed EPS control algorithm.
Technical Paper

A Novel Method Predicting the Influence of Absorption Material on the Sound Quality of Interior Noise

2017-06-05
2017-01-1885
This paper presents a novel method predicting the variation of sound quality of interior noise depending on the change of the proprieties of absorption materials. At the first, the model predicting the interior noise corresponding to the change of the absorption material in engine room is proposed. Secondly the index to estimate the sound quality of the predicted sound is developed. Thirdly the experimental work has been conducted with seven different materials and validated the newly developed index. Finally, this index is applied for the optimization of absorption material to improve the sound quality of interior noise in a passenger car.
Technical Paper

A Numerical and Experimental Study on Power Steering Shudder

2008-04-14
2008-01-0501
Shudder vibration of a hydraulic power steering system during parking maneuver was studied with numerical and experimental methods. To quantify vibration performance of the system and recognize important stimuli for drivers, a shudder metric was derived by correlation between objective measurements and subjective ratings. A CAE model for steering wheel vibration analysis was developed and compared with measured data. In order to describe steering input dependency of shudder, a new dynamic friction modeling method, in which the magnitude of effective damping is determined by average velocity, was proposed. The developed model was validated using the measured steering wheel acceleration and the pressure change at inlet of the steering gear box. It was shown that the developed model successfully describes major modes by comparing the calculated FRF of the hydraulic system with measured one from the hydraulic excitation test.
X