Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

2005 Ford GT - Vehicle Aerodynamics - Updating a Legend

2004-03-08
2004-01-1254
This paper documents the processes and methods used by the Ford GT team to meet aerodynamic targets. Methods included Computational Fluid Dynamics (CFD) analysis, wind tunnel experiments (both full-size and scale model), and on-road experiments and measurements. The goal of the team was to enhance both the high-speed stability and track performance of the GT. As a result of the development process, significant front and rear downforce was achieved while meeting the overall drag target.
Technical Paper

2005 Ford GT Electrical & Electronics

2004-03-08
2004-01-1259
The Ford GT Program Team was allocated just 22 months from concept to production to complete the Electrical and Electronics systems of the Ford GT. This reduced vehicle program timing - unlike any other in Ford's history -- demanded that the team streamline the standard development process, which is typically 54 months. This aggressive schedule allowed only 12 weeks to design the entire electrical and electronic system architecture, route the wire harnesses, package the components, and manufacture and/or procure all components necessary for the first three-vehicle prototype build.
Technical Paper

2005 Ford GT Powertrain - Supercharged Supercar

2004-03-08
2004-01-1252
The Ford GT powertrain (see Figure 1) is an integrated system developed to preserve the heritage of the LeMans winning car of the past. A team of co-located engineers set out to establish a system that could achieve this result for today's supercar. Multiple variations of engines, transaxles, cooling systems, component locations and innovations were analyzed to meet the project objectives. This paper covers the results and achievements of that team.
Technical Paper

6 Speed Automatic Transmission Vibration Magnitude Prediction and Whine Noise Improvement through Transmission System Modeling

2011-05-17
2011-01-1553
As automotive technology has been developed, gear whine has become a prominent contributor for cabin noise as the masking has been decreased. Whine is not the loudest source, but it is of high tonal noise which is often highly unpleasant. The gear noise originates at gear mesh. Transmission Error acts as an excitation source and these vibrations pass through gears, shafts and bearings to the housing which vibrates to produce noise on surrounding air. As microgeometry optimization target to reduce the fundamental excitation source of the noise, it has been favored method to tackle gear whine noise, especially for manual transmission. However, practicality of microgeometry optimization for the planetary gear system has been still in question, because of complex system structure and interaction among multi mesh gear sets make it hard to predict and even harder to improve. In this paper, successful case of whine noise improvement by microgeometry is presented.
Technical Paper

A BIW Structure Research of Light Weight Vehicle with High Stiffness by Steel

2015-03-10
2015-01-0061
The focus of this paper is to develop an innovative vehicle layout and optimize vehicle body structure with the latest lightweight steel technologies, such as hydro-forming and hot stamping. Our BIW structure achieved a mass savings of 28 kg (−10%) compared to the mass of baseline BIW structure. (Base BIW : MD_Elantra)
Technical Paper

A Bootstrap Approach to Training DNNs for the Automotive Theater

2017-03-28
2017-01-0099
The proposed technique is a tailored deep neural network (DNN) training approach which uses an iterative process to support the learning of DNNs by targeting their specific misclassification and missed detections. The process begins with a DNN that is trained on freely available annotated image data, which we will refer to as the Base model, where a subset of the categories for the classifier are related to the automotive theater. A small set of video capture files taken from drives with test vehicles are selected, (based on the diversity of scenes, frequency of vehicles, incidental lighting, etc.), and the Base model is used to detect/classify images within the video files. A software application developed specifically for this work then allows for the capture of frames from the video set where the DNN has made misclassifications. The corresponding annotation files for these images are subsequently corrected to eliminate mislabels.
Technical Paper

A CAE Optimization Process for Vehicle High Frequency NVH Applications

2005-05-16
2005-01-2422
A CAE SEA-based optimization process for the enhancement of vehicle high frequency NVH applications is developed and validated. The CAE simulation, based on statistical energy analysis (SEA) theory [1], has been used to analyze high frequency NVH responses for the vehicle sound package development. However, engineers have always faced two challenges during the vehicle SEA model development. One is to create a reliable SEA model, which is correlated well with hardware test data. The other is to have a systematic approach by using the correlated model to design effective and cost efficient sound package to improve vehicle interior quietness. The optimization process presented in this paper, which integrates analysis, design sensitivity, and optimization solver, has been developed to address the challenges and to serve the needs. A non-correlated Sport Utility Vehicle (SUV) and a correlated midsize car models were used to demonstrate the capability of the proposed optimization process.
Technical Paper

A Case Study in Hardware-In-the-Loop Testing: Development of an ECU for a Hybrid Electric Vehicle

2004-03-08
2004-01-0303
Ford Motor Company has recently implemented a Hardware-In-the-Loop (HIL) testing system for a new, highly complex, hybrid electric vehicle (HEV) Electronic Control Unit (ECU). The implementation of this HIL system has been quick and effective, since it is based on proven Commercial-Off-The-Shelf (COTS) automation tools for real-time that allow for a very flexible and intuitive design process. An overview of the HIL system implementation process and the derived development benefits will be shown in this paper. The initial concept for the use of this HIL system was a complete closed-loop vehicle simulation environment for Vehicle System Controller testing, but the paper will show that this concept has evolved to allow for the use of the HIL system for many facets of the design process.
Technical Paper

A Case Study on the Improvement of Idle Quality of an SUV Car with DI Diesel Engine

2003-05-05
2003-01-1464
With its advantage on the economic and environmental reason the preference of vehicles with diesel engine is growing in the domestic market as well as European market. And automobile makers are enthusiastic in the development of diesel engine vehicles with more comfortable interior atmosphere in order to meet consumers' requirements. Generally, when compared with gasoline engine, diesel engine has much bigger vibratory input to the mounting structure and produces higher level in interior noise and body vibration. In this paper, the improvement of NVH quality at the idle state of an SUV car with DI diesel engine has been achieved through tuning engine mounts based on TPA (Transfer Path Analysis) for low frequency vibration and interior booming noise.
Technical Paper

A Comparison of Four Methods for Determining the Octane Index and K on a Modern Engine with Upstream, Port or Direct Injection

2017-03-28
2017-01-0666
Combustion in modern spark-ignition (SI) engines is increasingly knock-limited with the wide adoption of downsizing and turbocharging technologies. Fuel autoignition conditions are different in these engines compared to the standard Research Octane Number (RON) and Motor Octane Numbers (MON) tests. The Octane Index, OI = RON - K(RON-MON), has been proposed as a means to characterize the actual fuel anti-knock performance in modern engines. The K-factor, by definition equal to 0 and 1 for the RON and MON tests respectively, is intended to characterize the deviation of modern engine operation from these standard octane tests. Accurate knowledge of K is of central importance to the OI model; however, a single method for determining K has not been well accepted in the literature.
Technical Paper

A Comparison of Methods for Evaluating Automatic Transmission Fluid Effects on Friction Torque Capacity - A Study by the International Lubricant Standardization and Approval Committee (ILSAC) ATF Subcommittee

1998-10-19
982672
As part of the International Lubricant Standardization and Approval Committee's (ILSAC) goal of developing a global automatic transmission fluid (ATF) specification, members have been evaluating test methods that are currently used by various automotive manufacturers for qualifying ATF for use in their respective transmissions. This report deals with comparing test methods used for determining torque capacity in friction systems (shifting clutches). Three test methods were compared, the Plate Friction Test from the General Motors DEXRON®-III Specification, the Friction Durability Test from the Ford MERCON® Specification, and the Japanese Automotive Manufacturers Association Friction Test - JASO Method 348-95. Eight different fluids were evaluated. Friction parameters used in the comparison were breakaway friction, dynamic friction torque at midpoint and the end of engagement, and the ratio of end torque to midpoint torque.
Technical Paper

A Comparison of Pressure Sensitive Paint (PSP) Techniques for Aerodynamic Testing at Slow Velocities

2002-03-04
2002-01-0255
Pressure Sensitive Paint (PSP) has been used for several years by the aircraft industry in transonic wind tunnel testing where the oxygen concentrations are low and the luminescence of the paint is easily recorded. Extending PSP to slower speeds where the oxygen concentrations are closer to atmospheric conditions is much more challenging. For the past few years, work has been underway at both Wright Patterson Air Force Base and Ford Motor Company to advance PSP techniques for testing at slower speeds. The CRADA (Cooperative Research and Development Agreement) provided a way for comparisons to be made of the different PSP systems that were being investigated. This paper will report on PSP tests conducted as part of the CRADA.
Technical Paper

A Comprehensive Study of Door Slam

2004-03-08
2004-01-0161
As part of an ongoing technical collaboration between Ford and Rouge Steel Company, a comprehensive study of door slam event was undertaken. The experimental phase of the project involved measurements of accelerations at eight locations on the outer panel and strains on six locations of the inner panel. Although slam tests were conducted with window up and window down, results of only one test is presented in this paper. The CAE phase of the project involved the development of suitable “math” model of the door assembly and analysis methodology to capture the dynamics of the event. The predictability of the CAE method is examined through detailed comparison of accelerations and strains. While excellent agreement between CAE and test results of accelerations on the outer panel is obtained, the analysis predicts higher strains on the inner panel than the test. In addition, the tendency of outer panel to elastically buckle is examined.
Technical Paper

A Conceptual Analysis in the Early Design Stage for the Road-Noise Reduction using FRF-Based Substructuring

2022-03-29
2022-01-0312
NVH analysis based on numerical simulations before actual test vehicle is available becomes common process in the automotive industry. Furthermore, the latest work scope is extending even to conceptual study in the very early design stage, beyond traditional numerical simulations simply using 3-D CAD data. In case when reasonable information is provided at this very early vehicle development stage, a better decision on the design concept would be possible, and subsequent design process can be carried out in more efficient manner. The core of this trend is that it allows us to predict vehicle performance at the conceptual design stage without 3-D CAD data, and then, with this prediction, to suggest meaningful design directions for next stage. From this point of view, FRF-Based Substructuring (FBS) methodology has potential to be used as an appropriate tool for this purpose.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
Technical Paper

A Cost-Effective Offline Routing Optimization Approach to Employee Shuttle Services

2017-03-28
2017-01-0240
Ride Hailing service and Dynamic Shuttle are two key smart mobility practices, which provide on-demand door-to-door ride-sharing service to customers through smart phone apps. On the other hand, some big companies spend millions of dollars annually in third party vendors to offer shuttle services to pick up and drop off employees at fixed locations and provide them daily commutes for employees to and from work. Efficient fixed routing algorithms and analytics are the key ingredients for operating efficiency behind these services. They can significantly reduce operating costs by shortening bus routes and reducing bus numbers, while maintaining the same quality of service. This study developed an off-line optimization routing method for employee shuttle services including regular work shifts and demand based shifts (e.g. overtime shifts) in some regions.
Technical Paper

A Customer Driven Reliability and Quality Methodology for Existing Products

1989-02-01
890811
In order to maximize customer satisfaction in today's global market place, the quality of products and services need to be improved continually. Increased focus on quality, with the attendant proliferation of methods and tools, has created the need for a comprehensive framework to guide the selection of the tools. Individuals within an organization need to know what tools are appropriate in a given situation, and when, where and how the knowledge gained from an effort should be documented. In addition, a common nomenclature to convey quality related information to each other would avoid confusion and improve the communication process thus improving the effectiveness and productivity of the organization. This paper integrates tools that have evolved recently with the old tools that have been in use for a number of years.
Technical Paper

A Development of Spindle Drive Power Trunk Lid System with Optimizing Operation Noise

2022-03-29
2022-01-0759
The power trunk lid system is a device that automatically opens and closes the trunk lid by motor, for the purpose to improve user’s convenience. This technology was applied only to high-end large cars such as Equus and Genesis. But as preference for high convenience features increases, the scope of application is gradually expanding to semi-large and mid-sized cars. Therefore, the necessity of securing profitability through cost reduction was emerged, and it made us to develop the power trunk lid system by spindle drives. Compared to the conventional swing arm drive type, the spindle drive type may achieve cost savings, lightness and easy of assembly by optimizing the required motor specifications. However, since it uses a planetary gear with high gear ratio and the high rotation speed of the motor, operating noise is relatively large.
Technical Paper

A Development of the Driver IC in LED Rear Combination Lamp for Circuit Standardization

2021-04-06
2021-01-0850
Today, many automakers are using LED lamp sources in exterior lamps to establish brand awareness and introduce specialized lamp designs. These eye-catching LED lamp source solutions require many control functions as the lamp functions are diversified and advanced, and accordingly the requirements for standardization and optimization of controllers are increasing. In particular, our LED rear combination lamps have a variety of LED loads according to the design of the lamp model, the installation position, and the diagnostic regulations, so that the design complexity and the number of specifications of the controller are increased [4]. In recent years, more and more aesthetic designs and new technologies are used by various automakers to optimize their controllers in cooperation with global partners to optimize costs [1].
Technical Paper

A Drum Brake Squeal Analysis in the Time Domain

2005-05-16
2005-01-2312
Brake squeal has been a chronic customer complaint, often appearing high on the list of items that reduce customers' satisfaction with their vehicles. Brake squeal can emanate from either a drum brake or a disc brake even though the geometry of the two systems is significantly different. A drum brake generates friction within a cylindrical drum interacting with two semi-circular linings. A disc brake consists of a flat disc and two flat pads. The observed squeal behavior in a vehicle differs somewhat between drum and disc brakes. A drum brake may have a loud noise coming from three or more squeal frequencies, whereas a disc brake typically has one or two major squeal frequencies making up the noise. A good understanding of the operational deflection shapes of the brake components during noise events will definitely aid in design to reduce squeal occurrences and improve product quality.
X