Refine Your Search

Topic

Search Results

Technical Paper

A BIW Structure Research of Light Weight Vehicle with High Stiffness by Steel

2015-03-10
2015-01-0061
The focus of this paper is to develop an innovative vehicle layout and optimize vehicle body structure with the latest lightweight steel technologies, such as hydro-forming and hot stamping. Our BIW structure achieved a mass savings of 28 kg (−10%) compared to the mass of baseline BIW structure. (Base BIW : MD_Elantra)
Technical Paper

A Comparative Study of Non-Asbestos Organics vs. Low Steel Lomets for Humidity Sensitivity

2012-09-17
2012-01-1788
Non-Asbestos Organic (NAO) disc pads and Low Steel Lomet disc pads were subjected to high and low humidity conditions to discover how humidity affects these two classes of formulations for physical properties, friction, wear and noise characteristics. The 2 classes of formulations show similarities and differences in response to increasing humidity. The humidity effect on deformation of the surface microstructure of the gray cast iron disc is also investigated. Humidity implications for pad quality control and brake testing are discussed.
Technical Paper

A Development of the Driver IC in LED Rear Combination Lamp for Circuit Standardization

2021-04-06
2021-01-0850
Today, many automakers are using LED lamp sources in exterior lamps to establish brand awareness and introduce specialized lamp designs. These eye-catching LED lamp source solutions require many control functions as the lamp functions are diversified and advanced, and accordingly the requirements for standardization and optimization of controllers are increasing. In particular, our LED rear combination lamps have a variety of LED loads according to the design of the lamp model, the installation position, and the diagnostic regulations, so that the design complexity and the number of specifications of the controller are increased [4]. In recent years, more and more aesthetic designs and new technologies are used by various automakers to optimize their controllers in cooperation with global partners to optimize costs [1].
Technical Paper

A Study for Improving the Resistance to Fretting Corrosion of SCr 420 Gear Steel

2007-08-05
2007-01-3734
A study for improving the resistance to fretting corrosion of SCr 420 pinion gear was conducted. Fretting is the damage to contacting surfaces experiencing slight relative reciprocating sliding motion of low amplitude. Fretting corrosion is the fretting damage to unlubricated contacting surfaces accompanied by corrosion, mostly oxidation that occurs if the fretting occurs in air. Two kinds of conventional heat treatment and a newly designed one suggested for improving the resistance to the fretting corrosion of pinion gear were compared each other to find out what is the main factor for generating fretting corrosion phenomenon. Increased carbon potential at both the heating and diffusing zone and reduced time of tempering was found out to be a solution for improving the resistance to fretting corrosion of forged and heat treated gear steel. On the contrary, modified carbo-nitriding using ammonia gas has been getting worse the fretting corrosion problem.
Journal Article

A Study on Flexible Transparent Electrode Materials for Touch Sensor

2023-04-11
2023-01-0074
As the AVN display in the car interior becomes larger and located above the center fascia, the driver's visual visibility is becoming important. In addition, since an expensive touch sensor is installed, a transparent electrode cost reduction technology for a display touch sensor that can replace an indium material, which is an expensive rare metal, is required. In this paper, we developed new transparent electrode materials and manufacturing methods for the touch sensor film which light reflectance is low and flexible without a separate low-reflection multi-layer, so that the design freedom is high and the material cost is low. By optimizing the amount of fluorine doping ratio in tin oxide, excellent electrical conductivity and high optical transmittance are secured, and the surface reflectance is reduced by adjusting the diameter and length of the silver nanowire. As a result, it was shown that the AVN display image and font readability was improved.
Technical Paper

A Study on the Improvement of Driver's Inconvenience to Ensure Driving Stability in Bad Weather Conditions

2023-04-11
2023-01-0651
Bad weather conditions such as torrential rain, heavy snow, and thick fog frequently occur worldwide. Vehicle accidents in such bad weather conditions account for a significant portion of all vehicle accidents, and the level of damage is relatively severe compared to other accidents that occur in clear weather. This paper analyzes the driver's driving stability in bad weather conditions, which has such a significant meaning, in various ways through experiments on the inconvenience experienced by the driver. In this study, three levels of bad weather conditions were implemented in a driving simulator environment to evaluate driver inconvenience for six activities. Through driving experiment, quantitative bio-signals and vehicle signals were analyzed in each weather condition. The SD survey was used to assess the driver's inconvenience level for activities performed while driving and analyze the ranking of inconvenience.
Technical Paper

An Application of Magnesium Alloy to Passenger Air Bag Housing

2000-03-06
2000-01-1115
To achieve a mass goal and minimize the bell mouthing phenomenon of Passenger Air Bag Housing which takes place when the air bag is in explosive action and detrimental to the safety of passenger side because excessive canister bell mouthing may distort and crash the top surface of instrument panel, a study on the replacing process of a PAB housing to a different material and process was performed. The explosive action of current steel PAB housing was firstly analized to evaluate the reaction forces transferred through the PAB and find out the adaptable material for replacing process. Due to the properties among the die casting alloys, the AM60B alloy was chosen for our new material for PAB housing. Then, stress analysis by the finite element method was performed for a design modification of magnesium one piece housing.
Technical Paper

An MBSE Methodology for Cross-Domain Vehicle Performance Development

2024-04-09
2024-01-2499
Even if an optimal design is produced in the mid-to-late stages of development, when the maturity of development is increasing, it is already difficult to accept the proposal between the organizations and functions. In case the optimal proposal is made with a small amount of information in the preceding stage, it will be helpful for mutual decision-making. In addition, if all members have a system and development environment that enables access and utilization of necessary data in a timely manner, it is possible to produce quick results through collaboration. To implement such a system and development environment, “digital modeling" of tangible and intangible assets will be essential and to implement an "integrated IT environment" that can access and utilize digital models. Until now, Hyundai Motor Company has not yet fully established a digital development environment that all researchers can simultaneously utilize during the concept development stage.
Technical Paper

Analysis of Sensitivity and Optimization for Chassis Design Parameters on the X-Wind Stability

2015-03-10
2015-01-0025
In the view point of driving safety, the crosswind sensitivity of a vehicle becomes more important, as the driving speed in highway gets higher in these days. The sensitivity of a vehicle to crosswind depends on many factors, including the design of the suspension and aerodynamics of the body, etc. However, the knowledge about this phenomenon has still to be improved, in order to develop vehicle with optimum characteristics for crosswind stability. In this research, the physics behind the sensitivity of a vehicle is discussed in detail through various kinds of virtual test using computer aided engineering (CAE) simulation scheme. In the first, a reliable simulation model for vehicle, driver, wind generator and interactions among them is built. This simulation model is verified by comparison with test results of real vehicle. Then, the sensitivity analysis is carried out to find out the most influential design parameters.
Technical Paper

Co-operative Control of Regenerative Braking using a Front Electronic Wedge Brake and a Rear Electronic Mechanical Brake Considering the Road Friction Characteristic

2012-09-17
2012-01-1798
In this study, a co-operative regenerative braking control algorithm was developed for an electric vehicle (EV) equipped with an electronic wedge brake (EWB) for its front wheels and an electronic mechanical brake (EMB) for its rear wheels. The co-operative regenerative braking control algorithm was designed considering the road friction characteristic to increase the recuperation energy while avoiding wheel lock. A powertrain model of an EV composed of a motor, and batteries and a MATLAB model of the control algorithm were also developed. They were linked to the CarSim model of the vehicle under study to develop an EV simulator. The EMB and EWB were modeled with an actuator, screw, and wedge to develop an EMB and EWB simulator. A co-simulator for an EV equipped with an EWB for the front wheels and an EMB for the rear wheels was fabricated, composed of the EV and the EMB and EWB simulator.
Technical Paper

Compatibility between Brake Discs and Friction Materials in DTV Generation and Recovery Test

2005-10-09
2005-01-3918
A comparative study was carried out to investigate the DTV (disk thickness variation) behavior according to the types of brake disks (gray iron grade 250 and high-carbon gray iron grade 200, 170) with two typical friction materials (non-steel and low-steel friction materials). To evaluate DTV generation and recovery characteristics, a parasitic drag mode simulating highway driving (off-brake) and a normal braking mode simulating city traffic driving (on-brake) were used with an inertia brake dynamometer. Results showed that DTV and BTV were strongly affected by the microstructure, hardness level and distribution of the gray cast iron with the friction material types. The BTV was reduced in the friction two pairs using non-steel friction materials with high carbon grade disks and low-steel friction materials with high-carbon, low hardness disk. In particular, the pair of low-steel friction materials and high-carbon, low-hardness brake disks was more effective on DTV recovery.
Technical Paper

Corrosion Induced Brake Torque Variation: The Effect from Gray Iron Microstructure and Friction Materials

2005-10-09
2005-01-3919
Brake judder caused by corrosion of gray iron disks was investigated. In this study, the microstructure of the gray iron disks and the friction film developed on the disk surface by commercial friction materials were examined to find the root cause of the corrosion induced brake torque variation. Corrosion of the disk was carried out in an environmental chamber, simulating in-vehicle disk corrosion. Moisture content and acidity of the friction materials were also taken into account for this investigation and brake tests to examine torque variation during brake applications were performed using a single-end brake dynamometer. Results showed that the friction film developed on the disk surface strongly affected the amount of corrosion, while graphite morphology of the gray iron had little effect on the corrosion.
Technical Paper

Customer Complaints Analysis Using Textmining Method

2022-03-29
2022-01-0131
In recent years, the automobile industry has been making efforts to develop vehicles that satisfy customers' emotions rather than malfunctions. The Vehicle Dependability Study(VDS) has been strengthened emotion items since the introduction of the new evaluation system VDS3 from 2015. The ratio of emotion items increased from 11% to 25%. In order to clarify the problem and cause of emotion items, we analyzed verbatim which is the customers' complaint data provided by J.D power every year, but it was difficult to extract customers' intention because the number of verbatim is small and expressed in terms of customer’s term rather than engineer’s term. To solve the problem, we are additionally colleting big data such as internet, warranty, online survey. Since the amount of data is very large, we developed textmining techniques such as dictionary, topic, Support Vector Machine(SVM), n-gram to improve process.
Technical Paper

Developing the Thermoplastic Water Pump and Power Steering Pulley for a Passenger Car

1998-02-01
980736
The thermoplastic automotive pulley has been developed and will be commercialized to high volume production that achieves cost saving and weight reduction over other automotive pulleys in the metal and thermosetting resin by Hyundai Motor Company. Design feature incorporated in this automotive pulley allow it to be manufactured and assembled onto the water pump more efficiently in consequence of design integration with the water pump and power steering pulley. However, the harsh environment and dynamic loads that the thermoplastic pulley has to withstand required extensive CAE analysis and testing of the molded parts and the standard glass reinforced PA was selected for the application to maximize cost savings. The key aspects of the plastic automotive pulley as well as its advantage are presented.
Technical Paper

Development of Accelerated Corrosion Test Mode Considering Environmental Condition

2002-03-04
2002-01-1231
Accelerated simulation of vehicle corrosion in a controlled environment not only involves large chambers for actual vehicle tests, but also requires careful consideration of interactions between various parameters given a short time period within which the test is bounded. A new corrosion durability test mode reproducing various field conditions using salt spray, climatic, sunlight simulation and cold chambers has been developed. Verification of the test mode is carried out using four actual vehicle corrosion tests correlated against used cars of Nort h America and Northern Europe. The process of new corrosion test mode is discussed along with the characteristics of the test chambers.
Technical Paper

Development of Aluminum Suspension Part using by High Pressure Casting of Electro-Magnetic Stirring

2018-04-03
2018-01-1394
The weight reduction of the car suspension parts has a direct influence on the ride and handling. However, the application of nonferrous metal materials, such as aluminum and magnesium, which results in a lighter weight of the suspension can lead to an increase in manufacturing costs compared to cast iron. In this study, vertical type high-pressure die casting using by electro-magnetic stirring (EMS) with A356 alloy in the sleeve was used to control the fine microstructure. Process optimization and part development, as well as unit product and automotive assessment were carried out for electro-magnetic stirring methods. Without making the slurry, the mechanical properties were obtained through optimization of process variables UTS 320MPa, YS 239MPa, EL 13.3%. It also succeeded in mass production with minimum cost increase of aluminum suspension components.
Technical Paper

Development of Fuel Cell Hybrid Vehicle by Using Ultra-Capacitors as a Secondary Power Source

2005-04-11
2005-01-0015
Hyundai motor company has developed a fuel cell hybrid vehicle that has ultra-capacitors as a secondary power source. The simulation of fuel cell vehicles allows the user to analyze various types of fuel cell systems and hybrid configurations before implementing into a real system and to reduce the development time and cost. Before implementing fuel cell vehicles, a fuel cell vehicle simulation model, that has component modularity and forward facing characteristics, was developed. The simulation model was used in designing the fuel cell hybrid vehicle to select component sizes and a hybrid configuration. The hybridization by using ultra-capacitors provided better fuel economy and power response than the hybridization by using batteries.
Technical Paper

Development of Wireless Message for Vehicle-to-Infrastructure Safety Applications

2018-04-03
2018-01-0027
This paper summarizes the development of a wireless message from infrastructure-to-vehicle (I2V) for safety applications based on Dedicated Short-Range Communications (DSRC) under a cooperative agreement between the Crash Avoidance Metrics Partners LLC (CAMP) and the Federal Highway Administration (FHWA). During the development of the Curve Speed Warning (CSW) and Reduced Speed Zone Warning with Lane Closure (RSZW/LC) safety applications [1], the Basic Information Message (BIM) was developed to wirelessly transmit infrastructure-centric information. The Traveler Information Message (TIM) structure, as described in the SAE J2735, provides a mechanism for the infrastructure to issue and display in-vehicle signage of various types of advisory and road sign information. This approach, though effective in communicating traffic advisories, is limited by the type of information that can be broadcast from infrastructures.
Technical Paper

Development of a Heat Resistant Cast Iron Alloy for Engine Exhaust Manifolds

2005-04-11
2005-01-1688
A new heat-resistant cast iron alloy has been developed for the exhaust manifolds of new passenger-car diesel engines. This development occurred because operating demands on exhaust manifolds have increased significantly over the past decade. These demands are due to higher exhaust gas temperatures resulting from tighter emission requirements, improved fuel efficiencies, and designs for higher specific engine power. These factors have led to much higher elevated temperature strength and oxidation resistance requirements on exhaust manifold alloys. Additionally, thermal fatigue that occurs directly as a result of thermal expansions and mechanical constraint has become an increasingly important issue. The research detailed in this paper focused on the optimization of the chemical composition of a Si-Mo ductile iron to improve the mechanical and physical properties for use in an engine exhaust manifold.
Technical Paper

Development of a Vehicle Electric Power Simulator for Optimizing the Electric Charging System

2000-03-06
2000-01-0451
The electric power system of a modern vehicle has to supply enough electrical energy to numerous electrical and electronic systems. The electric power system of a vehicle consists of two major components: a generator and a battery. A detailed understanding of the characteristics of the electric power system, electrical load demands, and the driving environment such as road, season, and vehicle weight are required when the capacities of the generator and the battery are to be determined for a vehicle. In order to avoid the over/under design problem of the electric power system, an easy-to-use and inexpensive simulation program may be needed. In this study, a vehicle electric power simulator is developed. The simulator can be utilized to determine the optimized capacities of generators and batteries appropriately. To improve the flexibility and easy usage of the simulation program, the program is organized in modular structures, and is run on a PC.
X